
Alan Clements Computer Organization and Architecture P a g e | 1

Terminology

We refer to the elements of a list as
nodes. A node is a record containing; for
example, information about the data
structure itself and user data.

In this introduction, the two fields of a
node are a pointer that points to the
next node, and a data field.

THIS IS A WORK IN PROGRESS!

ARM Assembly Language and Linked Lists

The purpose of this tutorial is to introduce the linked list and to demonstrate how they can be set up and
manipulated in ARM assembly language. We are carrying out this exercise because it demonstrate the way in
which pointers and register indirect addressing is used in a practical application.

A list is a sequence of elements such as names, or even more complex items. Although we could create simple
lists or tables in a computer application, we would soon run into problems
when manipulating the information. Consider Figure 1 that contains a list
of names. If we wish to sort the names in alphabetical order, we have to
perform a lot of data movement. This is not difficult with small lists, but a
list with a million items would take an excessively large amount of time.

The linked list solves the problem of list manipulation by separating
sequence from content. Figure 2 demonstrate this concept. Two lists have
been created: a list of pointers and a list of data items. Each of the
pointers points to its associated data. Now, if you wish to change the
order of the items, you can simply change the order of the pointers and
leave the items alone. You can remove an item by deleting its pointer, or
add an item by creating a new pointer.

Figure 3 demonstrates the linked list where the list of pointers and data items are merged. All we have to do is to
create a node with two parts: a head that contains a pointer to the next node, and a tail that contains the actual
data item itself. By convention, the final pointer in the last node of the list is set to 0 (the null pointer) to show
that the end of the list has been reached.

Figure 1 The simple list

Figure 2 The pointer list

Figure 3 The linked list

Figure 4 demonstrate how a simple linked list looks in memory. We’re used a small memory and decimal
arithmetic for simplicity.

Figure 4 The organization of a simple linked list in memory

Traversing the Linked List

Suppose we wish to add a new element to the end of a linked. We have to read the address field of the first
element to locate the next element. Then we read the address field of this element in order to move to the next
element. The list is traversed in this way until its end has been reached. We know that the end of the list has been
located when the address of the next element is zero.

The following fragment of ARM code inserts a new item into a linked list whose nodes consist of a 32-bit pointer
and a 32-bit data element at the next word location in memory; that is, if a pointer is at location m, its data is at
location m + 4. Initially, the variable HEAD points to the first item in the list, and the variable NEW contains the
address of the new item to be inserted.

 ADR r0,Head ;r0 points at the first element

Loop LDR r0,[r0] ;Repeat: read the next pointer into r0

 CMP r0,#0 ;IF this pointer is not null

Alan Clements Computer Organization and Architecture P a g e | 2

 BNE Loop ; THEN read the next pointer

EXIT B Exit ; ELSE loop here

The key instruction is LDR r0,[r0] which reads the contents of memory pointed at by r0 and puts the result in
r0. Since the value pointed at is the pointer to the next node, executing this instruction steps through the linked
list. The CMP r0,#0 is used to exit the loop when the null pointer has been located.

The next step is to test this code fragment. In Figure 5 we provide a suitable test environment. The linked list
begins at location Head. We have called the pointers Head, A, B, C. The data elements are 0x12345678,
0xAAAAAAAA, 0xBBBBBBBB, 0xCCCCCCCC, 0xFFFFFFFF, which you can see in the memory map.

Figure 5 Running the basic code in the Keil simulator

Let’s extend the code to perform a useful function by inserting a new element at the current end of the linked
list. In principle, we can put the new element anywhere in memory. In practice, we will assume that the memory
area beyond the last element if currently free and that we can locate a new element there. All we now need is a
register to hold the new data, and we will use r8 for that purpose.

We scan the link list as before. When we locate the final null pointer, we replace it with a pointer to the next
element. A new element is created and we insert the data from r8. Finally, we set the pointer field of the new
element to zero (Figure 6).

Alan Clements Computer Organization and Architecture P a g e | 3

 LDR r8,=0x12121212 ;Set up some dummy data for testing

 ADR r0,Head ;r0 points at the first element

Loop LDR r1,[r0] ;Read the next pointer into r0

 CMP r1,#0 ;IF this pointer is null

 BEQ Insert ; THEN we're at the end (so insert new record)
 MOV r0,r1 ; ELSE update r0

 B Loop ; and go round again

Insert ;Begin insertion
 ADD r0,r0,#8 ;Update pointer to point at next free node

 STR r0,[r0,#-8] ;Store the pointer in the previous pointer field

 MOV r1,#0 ;Set up the new null pointer

 STR r1,[r0] ;Save it in the new pointer field

 STR r8,[r0,#4] ;Pop in the new data field

Stop B Stop ;Park here

Figure 6 Inserting a new element at the end of a linked list

Alan Clements Computer Organization and Architecture P a g e | 4

Figure 7 The memory map of the program before the insertion of a record

Figure 8 The memory map of the program after the insertion of a record

Searching the Linked List for a Maximum Value

The next example demonstrates how we can search a linked list to find the maximum, value of a particular record
(data field).

Data in the first node

First record (head points to next
record at 0x00000003C)

Last record has

a null pointer

Data in the last node

Old null pointer replaced by
pointer to new last node

Last record has
a null pointer

Here’s the new data
we’ve inserted in the
last node.

Alan Clements Computer Organization and Architecture P a g e | 5

EXIT MOVEA.L #NEW,A1 Pick up address of new element

 MOVE.L A1,(A0) Add new entry to end

 CLR.L (A1) Add new terminator

The following three diagrams illustrate a linked list before the insertion of an element, after the insertion of a
new element, and the memory map before and after the insertion.

Example of a linked list

The effect of inserting an element into the linked list

Memory map of the linked list before and after the insertion of an element

KKKKKKKKKKKKKKKKKKKKKKKKKKKKKK

Example of the Use of Address Register Indirect Addressing

This is a mock ICA

An example of address register indirect addressing is provided by the linked list. The singly linked list is composed of a chain of

units, each linked to its successor by a pointer (i.e., address). The last element in the list usually has a null (i.e., zero) address.

00001000 00001008

00001004 00001125

00001008 00001010

0000100C 00002345

00001010 00001018

00001014 000012FC

00001018 00000000

0000101C 00001212

00001000 00001008

00001004 00001125

00001008 00001010

0000100C 00002345

00001010 00001018

00001014 000012FC

00001018 00002000

0000101C 00001212

Memorymapof linked list
before insertinganelement

Memorymapof linked list
after insertinganelement

00002000 00000000

00002004 0000ABCD
Note:Theshaded memory
elementsrepresent datavalues

Alan Clements Computer Organization and Architecture P a g e | 6

That is, an element in a linked list consists of a header (an address pointing to the next element) and a tail (the data stored by

each element). A linked list is useful because you can sort the list simply by changing the pointers, rather than moving the

elements themselves.

A linked list

If address register A0 points at the first element in the linked list, the operation MOVEA.L (A0),A0 reads the contents of the

memory location pointed at by address register A0 (i.e., the pointer field of the first item in the list) and puts it in address register

A0. The effect of this operation is to leave A0 pointing at the next element in the linked list. Each time this instruction is

executed, A0 is advanced to point to the next element.

Suppose we wish to add a new element to the end of a linked list. We have to read the address field of the first element to locate

the next element. Then we read the address field of this element in order to move to the next element. The list can be traversed

in this way until its end is reached. We know that the end of the list has been located when the address of the next element is

zero. The following fragment of code inserts a new item into the list. Initially, the longword variable HEAD points to the first

item in the list, and the longword variable NEW contains the address of the new item to be inserted.

 LEA HEAD,A0 A0 initially points to the start of the linked list

LOOP TST.L (A0) IF the address field = 0

 BEQ EXIT THEN exit

 MOVEA.L (A0),A0 ELSE read the address of the next element

 BRA LOOP Continue

EXIT LEA NEW,A1 Pick up address of new element

 MOVE.L A1,(A0) Add new entry to end of list

 CLR.L (A1) Insert the new terminator

The following three diagrams illustrate a linked list before the insertion of an element, after the insertion of a new element,

and the memory map before and after the insertion.

Example of a linked list

The effect of inserting an element into the linked list

Memory map of the linked list before and after the insertion of an element

Alan Clements Computer Organization and Architecture P a g e | 7

The Problem

a. Construct a linked list starting at location $1000 in memory. Assume that each element is composed of a longword

pointer to the next element and a 4-byte data field. Create your own list and choose suitable numbers for the data

elements. Create a list with 8 entries and remember that the pointer of the last element is zero.

b. Draw a diagram (i.e., memory map) for this linked list

c. Write a program that scans the linked list and returns (in data register D0), the value of the largest element in the

list.

d. Write a program that puts the elements in the linked list in descending order. That is, the list must be scanned and

the pointers modified so that each element points to the next lower element. The data fields of each entry in the list

are not "moved" – only the pointers change.

e. Use the 68K simulator to test your program.

e. Use the 68K simulator to test your program.

KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK

00001000 00001008

00001004 00001125

00001008 00001010

0000100C 00002345

00001010 00001018

00001014 000012FC

00001018 00000000

0000101C 00001212

00001000 00001008

00001004 00001125

00001008 00001010

0000100C 00002345

00001010 00001018

00001014 000012FC

00001018 00002000

0000101C 00001212

Memory map of linked list
before insertingan element

Memory map of linked list
after insertingan element

00002000 00000000

00002004 0000ABCD
Note:Theshaded memory
elementsrepresent datavalues

Alan Clements Computer Organization and Architecture P a g e | 8

KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK

Question 22. A singly-linked list, whose first element is pointed at by A0, consists of elements whose

head is a 32-bit address pointing to the next element in the list and a variable-length

tail. The tail may be of any length greater than 4 bytes. The last element in the list points

to the null address zero. Write a program to search the list for an element whose tail

begins with the word in data register D0.

Answer
LEA Start,A0 Point at the first element

Next TST.L (A0) Test the next pointer

BEQ Exit IF zero THEN end_of_list

CMP.W (4,A0),D0 Test for the element

BEQ Exit IF found THEN exit

MOVEA.L (A0),A0 Point to next element in the list

BRA Next Continue with search

Exit ...

LEA Start,A0 Point at the first element

Next TST.L (A0) Test the next pointer

BEQ Exit IF zero THEN end_of_list

CMP.W (4,A0),D0 Test for the element

BEQ Exit IF found THEN exit

Alan Clements Computer Organization and Architecture P a g e | 9

MOVEA.L (A0),A0 Point to next element in the list

BRA Next Continue with search

Exit ...

 ADR r1,MyArray ;set up r1 to point to MyArray

 .

 LDR r3,[r1] ;read an element

 . .

MyArray DCD 0x12345678

 AREA ARMtest, CODE, READONLY

 ENTRY

 MOV r0,#0 ;clear total in r0

 MOV r1,#10 ;FOR i = 1 to 10

Next MUL r2,r1,r1 ; square number

 MLA r0,r2,r1,r0 ; cube number and add to total

 ADD r1,r1,#1 ; increment number

 CMP r1,#11 ; test for 1 past end of loop

 BNE Next ;END FOR
 END

^^^

 AREA LinkedList, CODE, READONLY

 ENTRY

 ADR r0,List ; r0 points at the list

Next LDR r1,(r0) ; Repeat: read pointer field

 TST r1 ; test the pointer

 BEQ Exit ; leave on null pointer

 LDR r2,(4,r1) ; read the data element

 CMP r2,r3 ; test for 1 past end of loop

 BNE Next ; continue if element not found

List DCD 0x0000100012345678

 DCD 0x0000100012345678

 DCD 0x0000100012345678

 DCD 0x0000100012345678

 DCD 0x0000100012345678

 DCD 0x0000100012345678

 DCD 0x0000100088888888

Exit B Exit ;endless loop for testing

 END

