THIS IS A WORK IN PROGRESS!

ARM Assembly Language and Linked Lists

The purpose of this tutorial is to introduce the linked list and to demonstrate how they can be set up and
manipulated in ARM assembly language. We are carrying out this exercise because it demonstrate the way in

which pointers and register indirect addressing is used in a practical application.

A list is a sequence of elements such as names, or even more complex items. Although we could create simple
lists or tables in a computer application, we would soon run into problems

when manipulating the information. Consider Figure 1 that contains a list Terminology
of names. If we wish to sort the names in alphabetical order, we have to

perform a lot of data movement. This is not difficult with small lists, but a
list with a million items would take an excessively large amount of time.

The linked list solves the problem of list manipulation by separating
sequence from content. Figure 2 demonstrate this concept. Two lists have
been created: a list of pointers and a list of data items. Each of the
pointers points to its associated data. Now, if you wish to change the

We refer to the elements of a list as
nodes. A node is a record containing; for
example, information about the data
structure itself and user data.

In this introduction, the two fields of a
node are a pointer that points to the

order of the items, you can simply change the order of the pointers and | next node, and a data field.

leave the items alone. You can remove an item by deleting its pointer, or
add an item by creating a new pointer.

Figure 3 demonstrates the linked list where the list of pointers and data items are merged. All we have to do is to
create a node with two parts: a head that contains a pointer to the next node, and a tail that contains the actual
data item itself. By convention, the final pointer in the last node of the list is set to O (the null pointer) to show
that the end of the list has been reached.

Figure 1 The simple list

Figure 2 The pointer list

Figure 3 The linked list

I I |
| Address | Data | Address | Data | Address | Data | 0 | Data |
A

| Head |

Figure 4 demonstrate how a simple linked list looks in memory. We're used a small memory and decimal
arithmetic for simplicity.

Figure 4 The organization of a simple linked list in memory
Traversing the Linked List

Suppose we wish to add a new element to the end of a linked. We have to read the address field of the first
element to locate the next element. Then we read the address field of this element in order to move to the next
element. The list is traversed in this way until its end has been reached. We know that the end of the list has been
located when the address of the next element is zero.

The following fragment of ARM code inserts a new item into a linked list whose nodes consist of a 32-bit pointer
and a 32-bit data element at the next word location in memory; that is, if a pointer is at location m, its data is at
location m + 4. Initially, the variable HEAD points to the first item in the list, and the variable NEW contains the
address of the new item to be inserted.

ADR r0, Head ; r0 points at the first element
Loop LDR r0, [r0] ; Repeat: read the next pointer into rO
CMP r0, #0 ; IF this pointer is not null

Alan Clements Computer Organization and Architecture Page |1

BNE
EXIT B

Loop ;
Exit

THEN read the next pointer
ELSE loop here

~.

The key instruction is LDR rO, [r0] which reads the contents of memory pointed at by rO and puts the result in
r0. Since the value pointed at is the pointer to the next node, executing this instruction steps through the linked
list. The CMP r0,#0 is used to exit the loop when the null pointer has been located.

The next step is to test this code fragment. In Figure 5 we provide a suitable test environment. The linked list
begins at location Head. We have called the pointers Head, A, B, C. The data elements are 0x12345678,
OxAAAAAAAA, 0xBBBBBBBB, 0xCCCCCCCC, OXFFFFFFFF, which you can see in the memory map.

Figure 5 Running the basic code in the Keil simulator

[E:\CengageBook\Cengagel ectureNotesWebsite\ARM_LinkedLists\LinkedList.uvproj - pVisiond 1Ol =|
File Edit Wiew Project Flash Debug Peripherals Tools 5VCS Window Help
REEFIEETE S) - 5e @ & d
2 EBO wee o> DEBEER A =N Ik
|Registers a X||Disassemb|y a Xl
Register [value | 8: Exit B Exit ; ELSE finished -]
BC 0x00000010 EAFFFFFE B 0x00000010
R0 00000000 0x00000014 O0O000001C ANDEQ RO,RO,R12,L5L RO
R 00000000 0x00000018 12345678 ECRHNES R5,R4, #0x07800000
- R2 500000000 g.«:gggggg;g 00000024 ;E]]?EQ EDLQEO'R‘IBESR #32
s &(ﬂl]l]l]l]l]l]ﬂ Ox0000002‘1 0000002C ANDE R: RO,R12,L5R #32
i & OXOOOOOOEC‘ BBEBBEEDB :EiLLT‘Q i} %‘EE;EIEF:I.(':
SR 00000000 OXOOOODOEE 00000000 ANDE R“C’; RO, RO
Re £<00000000 OxOOOOODSG FFEFFFFFF ?7? "Q ' '
SR 00000000 OKOOOOOOS‘l 00000000 P{.NDE] RO,RO,RO
~R8 G<00000000 HOODOnREL oomemmn EER memE -
- RY C<0000D000 1| | 3
- R10 00000000
- A1 00000000 LinkedList.s * X
- R12 00000000 o1 ARER LinkedList, CODE, RELZDWRITE Il
- R13(5F) C<0000D000 02 ENTEY —
- R14 (LR} 00000000 03
- R15 (PC) 200000010 04 ADR r0,Head ;¥ points at the first slement
- CPSR (60000003 05 Loop LDR rQ, [r0] sread the next pointer into r0
B~ SPSR (<00000000 06 CME r0, $0 IF this pointer is not null
Bl User/System o7 EBNE Loop ; THEN re=ad the next p sr
Bl Fast Intemupt L3108 Exit B Exit ; ELSE finished
B Intemupt 03
- Supervisor 10 Head DCD B
B Abort 11 DCT 0x12345678
B Undefined 12 & DCD B
B Intemal 13 DCD OxBARLRAAR
C<00000010 14 B DCD C
Supervisor 15 DCT 0xBEE53E53
a5 E{>1B C DCD 0x0
0.00000000 17 DCD OxFFFFFFFFE |-
18
— 1 END
=] Project | = Registers 1
|Memory1
Address: ID
0x00000000: EZ 0C ES5 90 00 00 E3 50 00 00 1& FF FF FC EA FF FF FE 00 00 Q0O 1C
0x0000001C: 00 24 AR AR AR AR OO0 OO0 00 2C BE BE BE BE 00 00 00 00 FF FF FF FF
0x00000038: 00 00 00 00 0O OO OO 00 00 OO0 00 00 00 0O 00 OO0 00 00 00 00 00 00
Ox00000054: Q0 00 00 00 OO0 OO OO OO OO 00 OO0 QO Q0 OO0 OO 00 OO0 OO Q00 OO0 QO 00

r;;_‘]CaII Stack + Locals

| ||Simu|a'| y;

Let’s extend the code to perform a useful function by inserting a new element at the current end of the linked
list. In principle, we can put the new element anywhere in memory. In practice, we will assume that the memory
area beyond the last element if currently free and that we can locate a new element there. All we now need is a
register to hold the new data, and we will use r8 for that purpose.

We scan the link list as before. When we locate the final null pointer, we replace it with a pointer to the next
element. A new element is created and we insert the data from r8. Finally, we set the pointer field of the new
element to zero (Figure 6).
Alan Clements

Computer Organization and Architecture Page |2

LDR r8,=0x12121212 ;Setup some dummy data for testing
ADR r0, Head ; r0 points at the first element
Loop LDR rl, [r0] ; Read the next pointer into r0
CMP rl, #0 ; IF this pointer is null
BEQ Insert ; THEN we're at the end (so insert new record)
MOV r0, rl ; ELSE update rO
B Loop ; and go round again
Insert ; Begin insertion
ADD r0,r0, #8 ; Update pointer to point at next free node
STR r0, [0, #-8] ; Store the pointer in the previous pointer field
MOV rl, #0 ; Set up the new null pointer
STR rl, [x0] ; Save it in the new pointer field
STR r8, [r0, #4] ; Pop in the new data field
Stop B Stop ; Park here

Figure 6 Inserting a new element at the end of a linked list

ok \Lengagel ecturefiotes Websaite \ARM _LinkedUists \Linkedtistinsertuvprog - pVisiond

el

INSsadx <3 B W e 3= 50 R

-, @e caEdA

EBO BP0 OBAELS[D]3-8-0-8 % |
313 g . L ¢

et - x
| Fagatur Ve = (] AREA LinkedList, CODE, READWRITE -
= Cusrent @ ENTRY

RO 20000000 03 LDR ©0,20x22325232 ;s=t up smme dummy data for testiag
Rl 00000000 o4 ADR D, Head ¥0 points at the first element
R2 DA0000000 06 Locp LDR ri, (r0] sr¥aad the next pointsy into r0
%] 00000000 (£ o ri, 40 $IF this pointar is
L) 000000000 o BEQ Inserc THEN at th= end
RS 00000000 o o r0, r1 ELSE update ro
Bh DO0000000 -8 B Loop and go ronnd again
R? 00000000 10
RE 00000000 "
RS 00000000 12 Inserc
R0 00000000 13 ADD ¥0,rD, %2
R11 00000000 1" STR *0, [v0,$-5]
R1Z B00000000 15 wov ri, 20
R1I5P) Q00000000 16 STR ri, [r0]
RI4LA) 0000000 7 STR T8, (r0,24]
RIS (PO 00000000 18 Szop B Steop spark here
& CP3R 00000003 13
SPSR 200000000 20 Head bco A
B Use/Syatam 21 oco Ox12343678
Bl Fast memge 2 A bco E
5 ntemet 3 DCO OXARARARAA
1 Supervisor N B oco c
- Aot 5 oco OxBBBBEESEE
- Undefined - C oco +final aull pointer
- intemal rd Dco sdate field of lest record
PCS DA0000000 8 bco sdunny data (insarted record to go hers)
Mode Supervisoe o b} oce sdunmy data
Sutes] £l
Sec @ 0020000C - 31 ENT
et | Enegsten | el
Ackdar: [0
Ox00000000; ES 9F £0 %4 E2 8F 00 28 E5 90 10 00 E3 51 00 00 OA 00 00 01 21 AO 00 O1 EA FF FF FA 22 20
Ox00000022: 00 O8 E3 AD 10 0D ES B0 10 00 ES 80 20 .04 EA.FF FF FE 00 00 00 3C 12 34 56 78 00 00 00 4¢
0x00000044; 00 0O 00 4C BB BB BB BB 00 C0 00 90 FF FF FF FF 11 11 11 11 22 22 22 22 12 12 12 12 90 00
0x00000066: 00 00 0O 0O OO 0O 00 00 00 OO 0O 00 00 00 0O 00 00 00 00 00 00 00 00 00 00 G0 00 00 00 00
SO Call S2atk « Locan

IMemoy 1.

simuiatisn

Alan Clements Computer Organization and Architecture

Page |3

Figure 7 The memory map of the program before the insertion of a record

[2
0 01 En FF FF FA E2 20 00 08 E5 00
34 88 78)00 00 00 44)AR AR AR AR

22 12 12 12 12 ©0 00 00 ©D 00 00 .I

O OA D00 00 O

Last record has | Data in the first node |

a null pointer

First record (head points to next
Data in the last node record at 0x00000003C)

Figure 8 The memory map of the program after the insertion of a record

AD 00 01 XA PF FF FA E

1 X E2

i2 34 5¢ 18

Here’s the new data
we've inserted in the
Old null pointer replaced by Last record has last node.

pointer to new last node a null pointer

Searching the Linked List for a Maximum Value

The next example demonstrates how we can search a linked list to find the maximum, value of a particular record
(data field).

Alan Clements Computer Organization and Architecture Page |4

EXIT MOVEA.L #NEW,Al Pick up address of new element
MOVE.L Al, (AQ) Add new entry to end
CLR.L (A1) Add new terminator

The following three diagrams illustrate a linked list before the insertion of an element, after the insertion of a
new element, and the memory map before and after the insertion.

Example of a linked list

| | |
| 1008 | 1125 | 1010 | 2845 | 1018 | 12FC | 0 [1284 |
A

| 1000 |

The effect of inserting an element into the linked list

| | |
| 1008 | 1125 | 1010 | 2345 | 1018 | 12FC | 2000 | 1234 | o | ABcp |
A

| 1000 |

Memory map of the linked list before and after the insertion of an element

Memory mep of linked list Memory mep of linked list

before inserting an element dter inserting an element
00001000 | 00001008 00001000 | 00001008
00001004 | 00001125 00001004 | 00001125
00001008 | 00001010 00001008 | 00001010
0000100C| 00002345 0000100C| 00002345
00001010 | 00001018 00001010 | 00001018
00001014 | 000012FC 00001014 | 000012FC
00001018 | 00000000 00001018 | 00002000
0000101C| 00001212 0000101C| 00001212
00002000 | 00000000
gﬂ?mﬁg\rféﬁ 00002004 | 0000ABD

KKKKKKKKKKKKKKKKKKKKKKKKKKKKKK
Example of the Use of Address Register Indirect Addressing

This is a mock ICA
An example of address register indirect addressing is provided by the linked list. The singly linked list is composed of a chain of

units, each linked to its successor by a pointer (i.e., address). The last element in the list usually has a null (i.e., zero) address.

Alan Clements Computer Organization and Architecture Page |5

That is, an element in a linked list consists of a header (an address pointing to the next element) and a tail (the data stored by
each element). A linked list is useful because you can sort the list simply by changing the pointers, rather than moving the
elements themselves.

A linked list

I | |
|Address| Data | Addressl Data | Addressl Data | 0 | Data |
A

| Head |

If address register AO points at the first element in the linked list, the operation MOVEA.L (A0Q), A0 reads the contents of the
memory location pointed at by address register A0 (i.e., the pointer field of the first item in the list) and puts it in address register
AQ. The effect of this operation is to leave A0 pointing at the next element in the linked list. Each time this instruction is
executed, AO is advanced to point to the next element.

Suppose we wish to add a new element to the end of a linked list. We have to read the address field of the first element to locate
the next element. Then we read the address field of this element in order to move to the next element. The list can be traversed
in this way until its end is reached. We know that the end of the list has been located when the address of the next element is
zero. The following fragment of code inserts a new item into the list. Initially, the longword variable HEAD points to the first
item in the list, and the longword variable NEW contains the address of the new item to be inserted.

LEA HEAD, AO A0 initially points to the start of the linked list
LOOP TST.L (A0) IF the address field = 0

BEQ EXIT THEN exit

MOVEA.L (AO0),AO0 ELSE read the address of the next element

BRA LOOP Continue
EXIT LEA NEW, Al Pick up address of new element

MOVE.L Al, (AO) Add new entry to end of list

CLR.L (A1) Insert the new terminator

The following three diagrams illustrate a linked list before the insertion of an element, after the insertion of a new element,
and the memory map before and after the insertion.

Example of a linked list

| | |
[1008 | 1125 |1 1010 [2345 |L] 1018 | 12rc |[L] o [1284 |

-,

| 1000 |

The effect of inserting an element into the linked list

| | |
| 1008 | 1125 | 1010 | 2345 | 1018 | 12FC | 2000 | 1234 | o | aBco |
A

| 1000 |

Memory map of the linked list before and after the insertion of an element

Alan Clements Computer Organization and Architecture Page |6

Memory mep of linked list Memory mep of linked list
before inserting an element dter inserting an element
00001000 | 00001008 00001000 | 00001008
00001004 00001125 00001004 00001125
00001008 00001010 00001008 00001010
0000100C| 00002345 0000100C| 00002345
00001010 | 00001018 00001010 | 00001018
00001014 0O00012FC 00001014 0O00012FC
00001018 00000000 00001018 00002000
0000101C| 00001212 0000101C| 00001212
00002000 00000000

Note: The shaded memory

elements represent datavadues 00002004 | 0000ABD
The Problem
a. Construct a linked list starting at location $1000 in memory. Assume that each element is composed of a longword

pointer to the next element and a 4-byte data field. Create your own list and choose suitable numbers for the data
elements. Create a list with 8 entries and remember that the pointer of the last element is zero.

b. Draw a diagram (i.e., memory map) for this linked list

c. Write a program that scans the linked list and returns (in data register D0), the value of the largest element in the
list.

d. Write a program that puts the elements in the linked list in descending order. That is, the list must be scanned and

the pointers modified so that each element points to the next lower element. The data fields of each entry in the list
are not "moved" — only the pointers change.

e. Use the 68K simulator to test your program.

e. Use the 68K simulator to test your program.

KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK

Alan Clements

Computer Organization and Architecture

Page |7

Question 21. By means of diagrams explain the meaning of a singly-linked list and a doubly-linked list?

Answer A singly-linked list is a data structure whose members are composed of two elements:
a head and a fail. The tail is the data part of each member and its contents and structure
depend on the nature of the list. The head is a pointer element that points to the next
member of the list. The last member of the list may contain a pointer to zero or a pointer
back to the first member of the list.

l I l
IAc?dressl Data I Addressl Data I Addressl Data I 0 I Data I

Head

A doubly-linked list is similar to a single-linked list. However, each member of the list
has two pointers — one to the next member in the list and one to the previous member
of the list.

You can move through the members of a singly-linked list in one direction only. You
can move through the members of a double-linked list in two directions.

Address L_»| Address e Address I_. 0
r Address s ~—# Address D —» Address 2 Address Dot
v
Head

KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK

Question 22. A singly-linked list, whose first element is pointed at by AO, consists of elements whose
head is a 32-bit address pointing to the next element in the list and a variable-length

tail. The tail may be of any length greater than 4 bytes. The last element in the list points
to the null address zero. Write a program to search the list for an element whose tail
begins with the word in data register DO.

Answer

LEA Start,A0 Point at the first element

Next TST.L (AO) Test the next pointer

BEQ Exit IF zero THEN end of_ list

CMP.W (4,A0) ,DO Test for the element

BEQ Exit IF found THEN exit

MOVEA.L (AO0) ,A0 Point to next element in the list

BRA Next Continue with search

Exit ...

Question 22. A singly-linked list, whose first element is pointed at by A0, consists of elements whose
head is a 32-bit address pointing to the next element in the list and a variable-length
tail. The tail may be of any length greater than 4 bytes. The last element in the list points
to the null address zero. Write a program to search the list for an element whose tail
begins with the world in data register DO.

Answer LEA Start AB Point at the first element

Next TST.L (AB) Test the next pointer
BEQ Exit IF zero THEM end_of_list
CMP.W (4 A2),080 Test for the element
BEQ Exit IF found THEN exit
MOVEA.L (AG), A0 Point to next element in the list
BRA Next Continue with search

Exit

LEA Start,A0 Point at the first element
Next TST.L (AO) Test the next pointer
BEQ Exit IF zero THEN end of_ list

CMP.W (4,A0) ,DO Test for the element
BEQ Exit IF found THEN exit

Alan Clements Computer Organization and Architecture Page |8

MOVEA.L (AO0) ,A0 Point to next element in the list
BRA Next Continue with search
Exit ...

ADR rl,MyArray ;set up rl to point to MyArray
LDR r3, [rl] ;read an element
MyArray DCD 0x12345678

AREA ARMtest, CODE, READONLY

ENTRY
MOV r0, #0 ;clear total in rO
MOV rl, #10 ;FOR 1 = 1 to 10
Next MUL r2,rl,rl ; square number
MLA r0,r2,rl,r0 ; cube number and add to total
ADD rl, rl,#1 ; increment number
CMP rl, #11 ; test for 1 past end of loop
BNE Next ; END FOR
END

AAN

AREA LinkedList, CODE, READONLY

ENTRY
ADR r0,List ; r0O points at the list
Next LDR rl, (r0) ; Repeat: read pointer field
TST rl ; test the pointer
BEQ Exit ; leave on null pointer
LDR r2, (4,rl) ; read the data element
CMP r2,r3 ; test for 1 past end of loop
BNE Next ; continue if element not found

List DCD 0x0000100012345678
DCD 0x0000100012345678
DCD 0x0000100012345678
DCD 0x0000100012345678
DCD 0x0000100012345678
DCD 0x0000100012345678
DCD 0x0000100088888888

Exit B Exit ;endless loop for testing
END
Alan Clements Computer Organization and Architecture

Page |9

