
Elementary Introduction to Computer Architecture

This article provides a simple introduction to the concepts of computer architecture and assembly
language programming. It is intended for those with little or no prior knowledge of these topics and
will enable them to read more advanced articles.

To illustrate this article, we use a hypothetical computer called sARM. This is a slightly simplified
version of a real computer (i.e., the ARM). I have chosen the ARM as a representative processor
because it is a simple but powerful and elegant processor. I have developed the sARM processor as a
teaching tool because it is even simpler than the ARM and removes some of the practical details that
stand in the way of a student’s understanding of assembly language programming. Once you
understand the sARM, converting to the ARM is easy.

Conventional computers manipulate binary (i.e., two-state) data in the form of 1s and 0s. This data
may represent any human quantity that can be converted into binary form; for example, text, music,
video, and so on; for example, the binary sequence 01000001 represents the internationally agreed
code for the letter ‘A’.

Computers use binary arithmetic because we can manufacture two-state logic devices very cheaply
and in massive numbers; for example, we can put a billion gates on a single silicon chip. There is
nothing magical about binary numbers. If we could build computers that used decimal arithmetic
with ten-state devices, we would.

Instructions

A computer program carries out a sequence of operations on data. The operations are called
instructions. These instructions are stored in memory and are carried out one-by-one in order unless
an instruction changes the sequence. Each instruction is represented by a string of bits; for example:

0000101010101100101000111001001

Computer instructions may be 8 bits long, 16 bits long, 32 bits long or 64 bits long. Generally
speaking, the longer the instruction the more powerful the computer. Some computers like Intel’s
processors have variable-length instructions; for example, a computer might have 16-, 24-, 32-, 48-,
or-64 bit instruction (note that these are all multiples of 16 bits). The ARM computer has 32-bit
instructions.

The way an instruction is organized (i.e., its bit structure and interpretation) depends only on the
computer manufacturer. An Intel instruction, an ARM instruction, and a Motorola instruction are all
totally different and completely incompatible with each other. Intel code runs on Intel chips, and
ARM code runs on ARM chips. You cannot run the code intended for machine A on machine B.

Because very few people can understand machine code, instructions are normally written in a form
of human-readable shorthand called assembly language; for example, the assembly language
instruction ADD r1,r2,r3 that means [r1] = [r2] + [r3] is reasonably easy to understand by a
programmer.

Note that the assembly language instruction is ADD r1,r2,r3. In order to define this operation
we use RTL notation (RTL = register transfer language). In RTL notation, the symbols [] indicate “the
contents of”, so that [r1] is read as “the contents of register r1”. Like many other authors, I use
courier font to indicate assembly language operations. This is partially because it’s a tradition,

and partially because it makes the code more readable by lining up the various fields of an
instruction.

The term computer architecture describes what a computer does at an abstract level; that is, it tells
us what the computer does but not how it does it. A computer architecture tells us what resources a
computer has (its registers), what instructions a computer can execute, and how it accesses data in
memory (addressing modes). In other words, a computer architecture defines the instruction set of a
computer.

Let me repeat a point I made at the beginning. In this article we are going to look at the ARM
assembly language for one simple reason. The ARM assembly language is very easy to learn, and far,
far easier than, for example, Intel’s IA32 assembly language. However, to make things even simpler
we are going to create a processor called sARM where the s indicates simple. The sARM’s instruction
set is a cut down version of the ARM’s instruction set. In particular, the sARM processor has an 8-bit
data word which means that we can provide simple numerical examples and not have to use
tediously long strings of 32 bits. The architecture of the sARM covers all the features required by the
BCS curriculum.

The differences between sARM and ARM are small – it would not take a student long to convert
from sARM to ARM programming. Some of the differences between ARM and sARM are presented
at the end of this introduction.

Registers

All computers have internal locations that hold data called registers. A register is nothing other than
a storage element for data inside the computer and is essentially is identical to a memory location.

The only difference between a register and memory location is that a register is part of the CPU and
a memory location is part of the memory system. Typically, there are about 8 to 32 registers and 230
memory locations in a computer.

The register width (the number of bits that can be stored in a register) is typically the same as a
instruction width – but not always. Fortunately, the register width and instruction width in the ARM
is the same; that is, 32 bits. However, the sARM that we are using to illustrate a processor has only
8-bit data words which means that the data range is 0 to 255. Similarly, the address space is also 256
locations from 0 to 255. We will assume that instructions do not occupy this address space; that is,
instructions are wider than 32 bits and live in a different memory to data.

Some computers give their registers individual names (often depending on the role carried out by
the register). The sARM has 8 registers and there are called r0, r1, r2, r3, r4, r5, r6, r7 which makes
life easy for the programmer. sARM has four additional special-purpose registers, CCR, SP, LR, and PC
whose functions we will describe later.

All the sARM’s eight registers r0 to r7 registers are the same in the sense what you can do to register

rx you can do to ry. ; for example, if you can write MOV r3,r7 you can write MOV r3,r7 or
MOV r0,r1.

In summary, an ARMs register is a just container that holds eight bits of data. If we write r4 in an
instruction we are referring to the 8 bits of data that are stored in register r4.

Instruction Types

We are going to look at the basic instructions implemented by mode computers. These can be
categorized into four groups: data movement, arithmetic operations, logical operations, shift
operations, compare operations, and branch (or control) operations. Note that some writer combine
arithmetic, logical and shift operations into one group that they call data processing operations; in
other words, they speak of data movement, data processing, and control operations.

Data Movement

This group of operations moves data from one place to another; that is,

 from one register to another

 from a register to memory

 from memory to a register.

Note that the word move is misleading. Rather than move, we should say copy because data is
copied from place to place. When you move data from A to B, the data in A does not disappear; it is
copied to B. The sARM operation MOV r1,r3 copies the data in register r3 to register r1. The data
that was in r3 remain unchanged, and the data that was in r1 is overwritten by the new data from r3;
consider the following example:

Before After
r1 = 00111010 r1 = 00111010
r3 = 11110000 r3 = 00111010

As well as a register, the sARM lets you specify a literal operand (i.e., an actual numeric value). A
literal operand is prefixed by the # symbol; for example, to load register r7 with 25 we write
MOV r7,#25. If you execute this instruction, register r7 will contain the binary sequence 00011001
which represents the decimal value 25.

How do we know that MOV r1,r2 moves the contents of register r2 to register r1 and not vice
versa? Alas, we cannot tell from this instruction. The direction of data movement is a matter of
human convention. Some assembly languages move data from left to right and some from right to
left. This situation makes moving from one microprocessor to another a bit of a nightmare (a bit like
learning a foreign language).

In this introduction to assembly language programming the direction of data movement is right to
left because that is the convention chosen by those who originally designed the ARM. However, in
order to make it easier remember this convention, I have written the destination operand in bold
red font. So, from now on I will write MOV r1,r2 and it will be obvious that r2 is copied to r1 and
not vice versa.

By the way, in most computer programs, the data movement group is often the largest group; for
example, about 70% of all instructions in a program do nothing other than move data from A to B.

Example

We wish to add 7 and 12. We can write

 MOV r0,#7 ;load register r0 with the integer 7

 MOV r1,#12 ;load r1 with 12

 ADD r0,r0,r1 ;add r0 to r1 and put the sum in r0

Because we can make the second operand in arithmetic and logical instructions a literal, we could
have written this cose as:

 MOV r0,#7 ;load register r0 with the integer 7

 ADD r0,r0,#12 ;add 12 to r0 and put the sum in r0

Arithmetic operations

In everyday arithmetic we use four operations: addition, subtraction, multiplication anddivision.
Many computers implement the same operations. Consider the sARM operation ADD r1,r2,r3.
This takes the 8 bits in r2 and adds the 8 bits in r3 and then puts the 8-bit result in register r1.

Examples of the sARM’s subtract, multiply, and divide operations are:

SUB r6,r0,r6
MUL r1,r5,r0
DIV r2,r5,r4.

The sARM performs all data processing operations on registers. You cannot perform an operation on
a memory location other than to load it into a register or to store a register value in memory. Note
that this is a defining factor of processors that are said to have a RISC architecture like the sARM.
Some processors like the Intel IA32 found in PCs have a CISC architecture and can perform data
operations directly on memory locations.

You can use the same register more than once in a data processing instruction; for example
ADD r1,r1,r2 will perform [r1] = [r1] + [r2].

We can even write ADD r4,r4,r4 to get [r4] = 2 x [r4].

Data processing operations allow you to use a literal as the second operand; for example,
ADD r1,r6,#4 adds 4 to the contents of r6 and deposit the result in r1. Similarly,
SUB r0,r0,#1 decrements the contents of r0 by 1.

Example

Suppose we wish to calculate z = (x2 + 4)(y2 + 5) + 10 where y = r1, x = r2, and z = r3. We can write

 MUL r2,r2,r2 ;get x2

 ADD r2,r2,#4 ;calculate x2 + 4

 MUL r1,r1,r1 ;get y2

 ADD r1,r1,#5 ;calculate y2 + 5

 MUL r1,r1,r2 ;calculate (x2 + 4) * (y2 + 5)

 ADD r3,r1,#10 ;calculate (x2 + 4) * (y2 + 5) + 10

Note that the above code reuses registers; for example, register r2 initially contains the value of x.
However, after we execute MUL r2,r2,r2, we have overwritten x with x2. If we wish to avoid
doing this and we want to preserve the original values of x and y, we must use other registers as
general-purpose scratchpads (i.e., temporary values). Consider:

 MUL r4,r2,r2 ;get x2 in temporary register r4

 ADD r4,r4,#4 ;calculate x2 + 4

 MUL r5,r1,r1 ;get y2; in temporary register r5

 ADD r5,r5,#5 ;calculate y2 + 5

 MUL r4,r4,r5 ;calculate (x2 + 4) x (y2 + 5)

 ADD r3,r4,#10 ;calculate (x2 + 4) x (y2 + 5) + 10

Here we’ve used registers r4 and r5 to hold temporary values. We’ve saved x and y in r2 and r1 at
the cost of using two additional registers. Actually, you could rewrite the code to preserve r1 and r2
using only one additional temporary register. Can you see how?

Logical Operations

There are three fundamental Boolean operations, AND, OR, and NOT. The sARM can perform an
AND or OR operation; for example, AND r2,r3,r4 or OR r6,r7,r6. sARM also includes the
common exclusive OR operation, EOR r0,r3,r1.

Logical operations are performed on the corresponding pairs of bits in two words; for example, if we
have x = 00110101 and y = 11110011 then

X.Y = 00110101.11110011 = 00110001

X+Y = 00110101+11110011 = 11111011

XY = 0011010111110011 = 11000110

We can use logical operations to manipulate bits. An AND is used to clear a bit, an OR to set it, and
an exclusive OR to toggle it (i.e., flip it over to its logical complement). Suppose we have an 8-bit
word in r0 and we wish to clear bits 0 and 1, set bits 2 and 3, toggle bits 4 and 5, and leave bits 6 and
7 unchanged. We can write:

 AND r0,r0,#111111002 ;clear bits 0 and 1 by ANDing with 0

 OR r0,r0,#000011002 ;set bits 2 and 3 by ORing with 1

 EOR r0,r0,#001100002 ;toggle bits 4 and 5 by EORing with 1

Shift Operations

A shift operation moves the bits of a register one or more places left or right. For example, shifting
011011101 one place left gives 110111010 and shifting it one place right gives 001101110. Note that
when we shift left or right, a new bit enters at one end and a bit drops out at the other end. How we
treat the ends of a word being shifted defines the type of shift.

The sARM implements six types of shift.

LSL Logical shift left The most significant bit drops out and is also copied into the C bit. A 0

enters at the least significant bit position.

LSR Logical shift right The least significant bit drops out and is also copied into the C bit. A 0

enters at the most significant bit position.

ASL Arithmetic shift left The most significant bit drops out and is also copied into the C bit. A 0

enters at the least significant bit position. Same as LSL.

ASR Arithmetic shift right The least significant bit drops out and is also copied into the C bit. The

previous most significant bit is copied into the most significant bit
position. This preserves the sign of a two’s complement value.

ROL Logical shift left The most significant bit drops out and is also copied into the C bit. A 0

enters at the least significant bit position.

ROR Logical shift right The least significant bit drops out and is also copied into the C bit. A 0

enters at the most significant bit position.

Example

Operation Before After C-bit after

LSL 11001010 10010100 1
LSR 11001010 01100101 0
ASL 11001010 10010100 1
ASR 11001010 11100101 0
ROL 11001010 10010101 1
ROR 11001010 01100101 0

The format of a shift operation is instruction + source register + number of shifts. The number of
shifts may be specified as a literal or as the contents of a register; for example we can write:

ASR r1,#1 ;shift the contents of register r1 one place right arithmetically

ASR r1,r3 ;shift the contents of register r1 right arithmetically by the number of places in r3
ROL r2,#4 ;rotate the contents of register r2 four places left
ROR r3,r0 ;rotate the contents of register r3 right by the number of places in r0

The effect of an arithmetic shift left is to multiply an integer by 2, and an arithmetic shift right
divides an integer by 2.

Example

We can used shifting to multiply a number by 10 since 10y = 2(4y + y).

MOV r1,r0 ;save a copy of y in r1

ASL r0,#2 ;shift r0 left twice to multiply by 4 to get 4y

ADD r0,r0,r1 ;add y in r1 to get 5y

ASL r0,#1 ;shift r0 left to multiply by 2 to get 10y

Example

Shift operations are often used to extract bits in a word. Consider the 8-bit word abcdefgh, where
the 8 letters represent bits. Suppose we want to extract bits 4 to 6 (i.e., bcd). We can do this:

 MOV r0,#abcdefghi ;put the data in r0

 LSR r0,#4 ;shift r0 right 4 places

 ;this gets 0000abcd

 AND r0,r0,#01111111 ;clear bit 7 to get 0000000bcd

With shifting and logical operations, you can process data in any way you desire.

Compare Operations

In order to implement a high-level language construct such as if … then … else, you need a
compare operation. The compare instruction, CMP does this. If you execute CMP r1,r2 the
contents of registers r1 and r2 are compared by subtracting r2 from r1.

The results of a comparison operation set the ARM’s condition code bits (also called the status flags)
in the CCR. Typically, the status flags are Z (zero), N (negative), C (carry), and V (arithmetic overflow).
For example, if we execute CMP r3,r5 and registers r3 and r5 contain the same value, then the Z-
bit would be 1, and the other status bits 0.

You can either compare two registers or a register and a literal’ for example, CPM r3,#12
compares the contents of register r3 with 12.

Consider the following comparisons where we’ve indicated the value of the registers being
compared and the effect on the status flags. Remember that CMP r0,r1 computes [r0] – [r1].

 r0 r1 C Z N V

CMP r0,r1 5 5 0 1 0 0

CMP r0,r1 5 2 0 0 0 0

CMP r0,r1 2 5 1 0 1 0

CMP r0,r1 100 -100 0 0 0 1

A compare operation is not very useful on its own. A comparison is invariably followed by a
conditional branch instruction.

Branch Instructions

A branch instruction (sometimes called a jump instruction) changes the sequence in which
instructions are executed. This is called a control instruction because it controls the flow of
instructions.

There are two types of branch instruction; unconditional and conditional. An unconditional branch
instruction tells the computer to continue executing at a specified point in the program. Typically
branch instructions uses relative addressing; that is, they specify the number of instructions to jump
to forward or back from the current instruction; for example a branch instruction might be to 10
locations on from the current instruction.

Fortunately, the programmer does not have to worry about how branch addresses are calculated.
The programmer labels the lines he or she wishes to jump to with a label. Consider the following
example where we’ve used the label There to indicate the branch target address.

 ADD r1,r2,r3 ;do some computing

 B There ;go to the line labelled There

There … ;continue executing from here….

The more interesting branch instruction is the conditional branch that forces a branch if and only if a
stated condition is true. If the condition is not true, the next instruction in sequence is executed.

Typical conditional branches are

BEQ branch on zero This branch is taken if Z = 1 and is equivalent to branch on equal
BNE branch on not zero This branch is taken if Z = 0 and is equivalent to branch on not equal

BCC branch on carry clear This branch is taken if C = 0 and is equivalent to branch on carry not set
BCS branch on carry set This branch is taken if C = 1 and is equivalent to branch on carry set
BMI branch on minus This branch is taken if N = 1 and is equivalent to branch on negative
BPL branch on carry set This branch is taken if N = 0 and is equivalent to branch on positive

Let’s take an example. Suppose we want to perform

If x = 0 then y = y + 3

We can compare x with 0 and then skip past the “add 3 to y” operation if x is not 0. We will assume
that x is in r1 and y is in r3. That is;

 CMP r1,#0 ;compare x (in r1) with 0

 BNE NotZero ;skip the addition if result not zero

 ADD r3,r3,#3 ;if x was zero we execute this

NotZero . . . ;here’s where we fall out of this code

In this example, the operation CMP r1,#0 subtracts 0 from the contents of register r1. Only if r0
contains 0 with the Z-bit be set to 1. Otherwise, it will be set to 0. If the Z-bit is not 1, then the
branch will be taken and the addition not executed.

Example

Let’s now add up the first ten integers. We need to implement:

sum = 0
i = 0
Repeat
 i = i + 1
 sum = sum + i
Until I = 10

We can code this as follows. Note that it’s up to the programmer to decide how to assign registers to
variables.

 MOV r0,#0 ;sum (in r0) is 0

 mov r1,#0 ;i (in r1) is 0

Repeat add r1,r1,#1 ;i = i + 1

 add r0,r0,r1 ;sum = sum + i

 CMP r0,#10 ;have we reached 10 yet?

 BNE Repeat ;continue until all done

 ;fall through to here

Example

Let’s code an if…then…else statement. We will use

If x = 3 then y = y + 4 else y = y – 5

Assuming x is in r2 and y is in r3, we can write

 CMP r2,#3 ;is x = 3?

 bne Not3 ;if not then skip the if part

 add r3,r3,#4 ;x = 3 so do the if part

 b OutIt ;and skip the else part

Not3 SUB r3,r3,#5 ;x not 3 so do the else part

OutIt . . . ;here’s where we exit this construct

The if…then…else construct is not elegant in assembly language. Note that you have to use an
unconditional branch to skip past the second condition.

By the way, we could have written the code in an alternate form by swapping the conditions as
follows.

 CMP r2,#3 ;is x = 3?

 BEQ Is3 ;if it is then skip the else part

 SUB r3,r3,#5 ;x not 3 so do the else part

 B OutIt ;and skip the if part

Is3 ADD r3,r3,#4 ;x = 3 so do the it part

OutIt . . . ;here’s where we exit this construct

Addressing Modes

Addressing modes concern all the ways in which we can express the location of an operand. The
sARM’s architecture has only three addressing modes – two of which we’ve already met.

1. The contents of a register; for example, ADD r1,r2,r3 specifies three operands, all of
them in registers.

2. A literal operand. The operand used by an instruction can be a literal (also called an
immediate) value; for example ADD r1,r2,#12 specifies the literal operand 12.

3. Pointer-based. In this case a register contains the address in memory of the operand. Only
two sARM instructions can use this addressing mode, LDR and STR.
LDR r0,[r1] loads the contents of memory whose address is in r1 into register r0.
Similarly, STR r3,[r2] stores the contents of register r3 in the memory location pointed
at by register r2.

Pointer-based addressing has several names. Some call it register indirect addressing and some call it
indexed addressing. What is important is that the address of the operand is in a register, and that
address is a variable because we can change the contents of a register.

Consider the following.

 MOV r0,#20 ;load r0 with the value 20

 LDR r1,[r0] ;load r1 with the contents of memory location 20

 ADD r0,r0,#1 ;increment the pointer register r0 by 1

 ;in case you missed it … r0 now contains 21

 LDR r2,[r0] ;load r2 with the contents of memory location 21

In this example we load two registers r1 and r2 with consecutive locations in memory using the same
source address [r0]. We can do this because we’ve changed the value of r0 between the two
operations.

Pointer-based addressing lets us step through tables, arrays, lists, vectors and any other data
structure you can think of.

Example

Suppose we want to add ten numbers that are stored in consecutive locations in memory starting at
location 100. We can use pointer-based addressing as follows.

 MOV r0,#0 ;clear the sum in r0

 MOV r1,#10 ;r1 is the loop counter - 10 numbers to add up

 MOV r2,#100 ;r2 is the pointer – initially at location 100

Loop LDR r3,[r2] ;get a number

 ADD r0,r0,r3 ;add it to the total

 ADD r2,r2,#1 ;now point to the next number to be added

 SUB r1,r1,#1 ;subtract 1 from loop counter

 BNE Loop ;if not zero then goto Loop

The two instructions in blue are the pointer use/manipulator instructions. In the first, we use
pointer-based addressing to access a memory location. In the second we point to the next memory
location in series.

Note that we use a countdown loop in this example. We set a counter in r1 to 10. At the end of the
loop we decrement it with SUB r1,r1,#1. This instruction decrements r1 and sets the condition

code flags accordingly. We can then use BNE to loop back if we have not counted down to zero.

Example

Suppose we have a sequence of 16 numbers at location 100 in memory and we want to write them
in sequence to location 200 in memory but in reverse order. How do we do it?

This is another case where we can use pointer-based addressing. Since we have two lists we can use
two pointers; one to the source of the data and one to its destination. Moreover, since we have to
reverse the sequence of numbers, we can move the two pointers in different directions. Watch this…

 MOV r0,#100 ;r0 points to the source list

 MOV r1,#215 ;r1 points to the end of the destination list

 MOV r2,#16 ;r2 is the element pointer

Loop LDR r3,[r0] ;get an element from the source list

 STR r3,[r1] ;and store it in the destination list

 ADD r0,r0,#1 ;increment the source pointer

 SUB r1,r1,#1 ;decrement the destination pointer

 SUB r2,r2,#1 ;decrement the loop counter

 BNE Loop ;and continue until all done

In this case, we move one pointer down by incrementing it and the other up by decrementing it (this
is imagining memory as a table with value 0 at the top).

Register Indirect Addressing with Displacement

This is a very minor modification of register indirect addressing. The only difference is that the
address of an operand is specified by the contents of a register plus a constant, for example

 LDR r1,[r0,#4] ;load r1 with the memory pointed at by [r0]+4

If r0 contains the value 123 then the contents of memory location 127 will be loaded into r0.

This addressing mode is useful when dealing with arrays. Suppose array W starting at memory
location 100 contains seven consecutive elements corresponding to the 7 says of the week (Sunday
first). Consider:

 MOV r0,#100 ;ro point to W

 LDR r1,[r0,#2] ;r1 contains Tuesday’s data

 LDR r2,[r0,#5] ;r2 contains Friday’s data

The Subroutine

It is often necessary to perform a particular action several times during the execution of a program.
You could write out the appropriate code and embed it in the program, once for every time you
needed to carry out that operation. Alternately, you can convey the code into a subroutine and call
that subroutine whenever out need it.

Suppose we want to perform the operation x2 + 2x + 12 several times. On each occasion we are
going to have to give the subroutine a parameter (i.e., the value of x) and get back a result (the
calculated value of x2 + 2x + 12). The following figure demonstrates calling this subroutine three
times. We have used register r0 to carry the parameter to the subroutine and r1 to return it.

The actual subroutine can be written as
Calc MUL r1,r0,r0 ;y = x2

 ADD r1,r1,r0 ;y = x2 + x

 ADD r1,r1,r0 ;y = x2 + 2x

 ADD r1,r1,#12 ;y = x2 + 2x + 12

 RTS ;return

The subroutine has a name which is needed to identify it. The subroutine also ends with a special
instruction, RTS, that was shall define later.

Note that I added x twice to get 2x. I could have multiplied x by 2 and then added that. Doing it this
way avoided either overwriting the original value of x or using an additional temporary register.

In order to invoke or call a subroutine the sARM has an instruction called BSR or branch to
subroutine. In this case we would write BSC Calc, because the label Calc indicates where the
subroutine is in memory.

When a subroutine is called with BSR the address of the subroutine is placed in the program
counter (in this case the address of the instruction at the memory location defined by the label
Calc). Execution continues from this point and all the instructions of the subroutine are executed.

However, we have a problem. How is a return made from the end of the subroutine back to the
instruction immediately after the BSR Calc?

When a BSR is executed, the return address (i.e., the address of the next instruction is pushed onto
the system stack).

At the end of the subroutine, the RTS instruction (return form subroutine) pulls the return address
off the system stack and execution continues normally.

Let’s look at a very simple example. We will call the subroutine twice using dummy data. The code is
given below and the address of each instruction provided. Note that we set the stack pointer to 100
initially (I chose 100 as the top of the stack – any address would have been possible).

0 MOV SP,#100 ;Top of stack = 100
1 MOV r0,#2 ;x = 2

2 BSR Calc ;call subroutine

3 MOV r1,r4 ;save y

4 MOV r0,#3 ;x = 3

5 BSR Calc ;call subroutine

6 MOV r1,r5 ;save y

7 STOP ;end of program

8 Calc MUL r1,r0,r0 ;y = x2

9 ADD r1,r1,r0 ;y = x2 + x

10 ADD r1,r1,r0 ;y = x2 + 2x

11 ADD r1,r1,#12 ;y = x2 + 2x + 12

12 RTS ;return

Let’s run through this code line by line. Since we use only two registers and the PC and SP, tracing
the code is going to be easy. In what follows the values are given at the end of the step.

Step 1 PC = 1 SP = 100 r0 = ?? r1 = ?? instruction = MOV SP,#100

Step 2 PC = 2 SP = 100 r0 = 2 r1 = ?? MOV r0,#2

Step 3 PC = 8 SP = 99 r0 = 2 r1 = ?? BSR Calc

Step 4 PC = 9 SP = 99 r0 = 2 r1 = 4 MUL r1,r0,r0

Step 5 PC =10 SP = 99 r0 = 2 r1 = 6 ADD r1,r1,r0

Step 6 PC =11 SP = 99 r0 = 2 r1 = 8 ADD r1,r1,r0

Step 7 PC =12 SP = 99 r0 = 2 r1 = 20 ADD r1,r1,#12

Step 8 PC = 3 SP = 100 r0 = 2 r1 = 20 RTS

Step 9 PC = 4 SP = 100 r0 = 2 r1 = 20 r4 = 20 MOV r1,r4

Step 10 PC = 5 SP = 100 r0 = 3 r1 = 20 MOV r0,#3

Step 11 PC = 8 SP = 99 r0 = 3 r1 = 20 BSR Calc

Step 12 PC = 9 SP = 99 r0 = 3 r1 = 9 MUL r1,r0,r0

Step 13 PC =10 SP = 99 r0 = 3 r1 = 12 ADD r1,r1,r0

Step 14 PC =11 SP = 99 r0 = 3 r1 = 15 ADD r1,r1,r0

Step 15 PC =13 SP = 99 r0 = 3 r1 = 27 ADD r1,r1,#12

Step 16 PC = 6 SP = 100 r0 = 3 r1 = 27 RTS

Step 17 PC = 7 SP = 100 r0 = 2 r1 = 27 r5 = 27 MOV r1,r5

Step 18 PC = 8 SP = 100 r0 = 3 r1 = 27 STOP

The above trace shows the execution of the code. We have highlighted the execution of the two
subroutines in yellow. Note that the program counter values are the same for each instance of the

subroutine because the same code is being executed. What is different is the value of the program

counter after the RTS instruction has been executed. In each case it corresponds to the return
point; that is, the instruction immediately after the subroutine call.

The Link Register Mechanism

Not all computers have an explicit and automatic subroutine call mechanism like the sARM. Some
real computers (MIPS, SPARC, ARM) that fall into the RISC category use a link register mechanism to
handle subroutine calls and returns.

The ARM provides a link register mechanism as an alternative to the SUB/RTS mechanism. You can
call a subroutine at location target by executing BL address (the mnemonic BL means branch
with link). This action loads the program counter with the address of the subroutine and puts the
return address in the link register RL. This is similar to the BSR except that the return address is
stored in a specific register rather than on the stack.

When a return from subroutine is made, the programmer executes MOV PC,RL to copy the return
address into the program counter.

What’s the advantage of the link register mechanism over the use of a stack to store the return
address? The answer is that it is faster because the return address does not have to be stored in
memory.

What’s the disadvantage of the link register mechanism over the use of a stack? The answer is that
you can call only one subroutine at a time. If you call a subroutine from within a subroutine (a
nested call) then you will overwrite the first return address in the link register. The only way you can
nest subroutine calls using the link register mechanism is to save the link register.

Example

Let’s create a very simple example using the link register mechanism. We will create subroutine to
count the numbers of 1s in a word and then call it three times.

First the subroutine.

Ones ;Counts 1s in r0, returns result in r1, uses r2

 MOV r2,#8 ;8 bits to test

Loop ROR r0,#1 ;rotate r0 one place right

 BCC NotOne ;if carry clear bit shifted out was not 1

 ADD r1,r1,#1 ;if carry set bump up the counter

NotOne SUBS r2,r2,#1 ;decrement the loop counter

 BNE Loop ;and continue until all bits tested

 MOV PC,LR ;copy link register to PC to return

This subroutine takes register r0 and counts the number of 1s in it and puts the result in r0. Register
r2 is uses as a counter and its contents are destroyed by this subroutine (r2 always returns with 0).
Note that by using ROR rather than LSR we ensure that r0 is not changed because with 8 rotates r0
ends up where it started. Note that we use SUBS (SUB with S) to indicate that after performing the
subtraction we update the condition code registers.

Now we can use this subroutine. Consider.

 MOV r0,r6 ;how many ones in r6?

 BL Ones ;call the subroutine

.

.

 MOV r0,r4 ;how many ones in r4?

 BL Ones ;call the subroutine

.

.

 MOV r0,#123 ;how many ones in 123 (in its binary form)
 BL Ones ;call the subroutine

.

Questions

1. What is a register?

A register is storage location used to store temporary data

2. How many registers are there?

It depends on the processor. The sARM has eight general purpose registers r0 to r8 and
three special-purpose registers PC, SP, and LR.

3. What is the difference between a memory location and a register?

They both hold one word of data. However, a register is inside the CPU and is much faster to
access. A register has a name (e.g., r0, r1, r3) and there are usually only a small number of
registers. A memory location has an address and there are typically 232 or more memory
locations.

4. How do I load data into a register from memory?

In the sARM processor you must use a LDR r0,[r1] instruction that copies the contents
of memory location specified by register r1 into register r0?

5. How would I load the contents of memory location 123 into register r4?

You would have to set up a pointer to location 123 and then use an LDR instruction; for
example,

 MOV r0,#124 ;load register r0 with the memory location to access

 LDR r4,[r0] ;load register

6. How do I load data from a register into memory?

You use the inverse of LDR which is STR; for example STR r5,[r7] loads the contents of
register r5 into the memory location pointed at by register r7.

7. Suppose I wanted to load 12 successive memory locations starting at 200 with the squares of
1, 2, 3, …, 12 to give me 1,2,4,9, …, 144. How would I do it?
You would use pointer based addressing to access memory locations sequentially as follows:

 MOV r0,#200 ;r0 points at location 200

 MOV r1,#1 ;r1 is the location counter

Next MOV r2,r1 ;take a copy of r1

 MUL r2,r2,r2 ;square it

 STR r2,[r0] ;store it in memory

 ADD r0,r0,#1 ;point to the next location in memory

 ADD r1,r1,#1 ;add 1 to the location counter

 CMP r1,#13 ;have we finished yet?

 BNE Next ;if not then continue

8. In the last example, what does BNE Next mean and how does it work?

The BNE instruction is a conditional branch that means branch to the specified location if
the condition not equal is true. In this case, the specified location is the line beginning with
the label Next. That label is programmer chosen and I always choose a meaningful name. In
order to understand the condition ‘not equal’ we have to look at the previous line. The

instruction CMP r1,#13 means compare the contents of register r1 with the number 13.
The comparison is done by subtraction; that is, [r1] – 13. After the comparison, the condition
code flags are set accordingly. For example, if [r1] is 12 then [r1] – 13 results in 12 – 13 = -1.
This causes the N flag to be set (result negative) and the Z flag to be clear (result is not zero).
Clearly the contents of r1 are not 13 and the next instruction causes a branch back to label

Next. However, on the next cycle round the loop, register r1 is incremented to 13 and the
comparison CMP r1,#13 results in 13 – 13 = 0. Consequently, the Z-flag is now set and
the next instruction does not branch back.

9. You have an array of 64 numbers stored consecutively in memory starting at location 16.
Write a program that counts the number of times the value 25 occurs in the array and store
it in register r7.

10. What is a subroutine?
11. What is the advantage of a subroutine?
12. What is the disadvantage of a subroutine (compares with simply writing the appropriate

code)?
13. What is the stack?
14. What is a nested subroutine?
15. What is the advantage of assembly language programming over programming in a high-level

language?
In assembly language you have direct access to a processor’s resources – registers,
instruction set, and addressing modes. You can therefore write programs very efficiently by
exploiting the processor’s resources. No compiler can write a program faster than the fastest
assembly language version.

16. What is the disadvantage of an assembly language as a means of programming?
Although you can in theory, write a very fast and efficient assembly language program, it is
very difficult for most human programmers to write non-trivial assembly language programs.
Moreover, assembly language programs are very difficult to read and debug. Programmer
productivity is far higher in high-level language programming.

17. Why do computer architecture textbooks cover assembly language and why is it still taught?
It is true that most computer users and many programmers will never use an assembly
language. However, all users feel the effects of assembly language because that determines
the performance and behaviour of their computer. For example, the performance (speed) of
operations involving arrays or the accuracy of floating-point calculations can be improved by
the programmer who understands the underlying computer architecture.
Another reason for teaching assembly language programming is that it brings into focus the
limitations of the underlying architecture in terms of the available operations, addressing
modes, and (most importantly) the limitation on the number of available registers.

18.

Appendix Differences between sARM and ARM

Here I am going to point out some of the small difference between the sARM as described
and the ARM processor.

The ARM has 16 registers r0 to r15. Registers r14 and r15 have special functions. Register
r14 is the link register that stores a return address after a branch with link instruction.

The ARM is a 32-bit machine with 32-bit registers and instructions.

The ARM’s condition codes are not set after an instruction is executed (apart from the CMP
instruction). If you wish to update the condition codes you must append an S to the
mnemonic; for example, SUBS r0,r1,r2.

The ARM has a restriction on its multiplication instruction. You cannot use the same register
for source and destination; that is, you cannot write MUL r1,r1,r2. Moreover, you can’t use
a literal; that is. MUL r1,r2,#12. These restrictions are due to practical design restraints
and instruction encoding limitations.

The ARM lacks a divide instruction. If you wish to divide two values you have to write a
subroutine to do it in terms of addition, subtraction, and shifting.

The ARM has pointer-based addressing, but with more variations than the sARM; for
example, the ARM lets you use an offset with a pointer-register. You can write
LDR r1,[r3,#12] to specify the operand address [r3] + 12; that is, 12 bytes on from
the location pointed at by register r3.

The ARM does not have a built in stack-pointer and a stack-based subroutine mechanism.
You cannot use BSR and RTS operations. However, you can use synthesize these operations
from other ARM instructions.

