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INTRODUCTION

This workbook has been written to accompany Computer Organization and Architecture: Themes and Variations and is
designed to give students a practical introduction to the ARM processor simulator from Kiel. | have provided examples of the
use of the ARM family simulator plus notes and comments in order to allow students to work together in labs and tutorials, or
for individual study at home.

Before we introduce the simulator, we look at several background topics that are needed before you can begin to write
assembly-language level programs.

THE INSTRUCTION SET ARCHITECTURE

An instruction set architecture, or ISA, is an abstract model of a computer that describes what it does, rather than how it does
it. You could say that a computer’s instruction set architecture is its functional definition. Essentially, the ISA is concerned
with a computer’s internal storage (its registers), the operations that the computer can perform on data (the instruction set), and
the addressing modes used to access data. The term addressing mode is just a fancy way of expressing where the data is; for
example, you can say that the data is in location 100, or you can say that it’s 200 location from here, or you can say, “here’s the
actual data itself”.

The first part of Computer Organization and Architecture: Themes and Variations is concerned with the instruction set
architecture, and the second part is concerned with computer organization which described an ISA is actually implemented.
Today, the term microarchitecture has largely replaced the computer organization. In this workbook, we are interested in the
ISA, rather than the microarchitecture.

REGISTERS

A register is a storage device that holds a single data word exactly like a memory location. Registers are physically located on
the CPU chip and can be accessed far more rapidly than memory. You can think of a register as a place in which data is waiting
to be processed. When computers operate on data, they frequently operate on data that is in a register. For example, to perform
the multiplication A = B x C, you first read the values of B and C from memory into two registers. Then, you multiply the two
numbers in the registers and put the result in a register. Finally, the result is transferred from a register to location A in memory.

In principle, there’s no fundamental difference between a location in memory and a register. There are just a few registers in a
computer, but millions of storage locations in memory. Consequently, you need far fewer bits to specify a register than a
memory location. For example, if a computer has eight data registers, an instruction requires only three bits to select one of the
eight registers to be used by an operation; that is from 000 to 111. If you specify a memory location, you need 32 bits to select
one out of 2% possible locations (assuming a 32-bit address space).

The size of a register (its width in bits) is normally the same size as memory locations and the size of the arithmetic and logical
operations in the CPU. If you have a computer with 32-bit words, they are held in 32-bit memory locations and 32-bit registers
and are processed by 32-bit adders, and so on.

There is no fundamental difference between a register and a memory location. If you could store gigabytes of high-speed
memory on a CPU chip and you could use very long instruction words (i.e., with the long addresses needed to specify one
individual location) then there would be no point in using registers. If you had a computer with 4 Gbytes of memory (2% bytes)
and wished to have an instruction that could implement C = A + B (i.e., ADD C, A, B) the you would require typically 16 + 32
+ 32 + 32 = 112 bits (the 16 bits represent the number of bits to encode the actual operation and the three 32-bits are needed for
the addresses A, B, and C). No mainstream modern computer has such a long instruction word.
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PROBLEM SET 1
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In your own words, explain what a register is in a computer.

How many registers does the 68K have?

How many registers does the ARM have?

What’s the processor with the largest number of registers that you can find?

If a computer has 128 user-accessible general-purpose registers, how many bits are be required to access a register?

That is, how many bits does it take to specify 1 out of 128?

Suppose a computer has eight registers and a 24-bit instruction length. A data processing instruction is of the
ADD rl, r2, r3 which implements rl = r2 + r3. How many bits in an instruction can be allocated to specifying an

operation if there are four general-purpose registers?

/ IMPORTANT POINT
memory and its value is what it is.

get 1235. That's a different location in memory which holds a different variable.

K we actually mean that the memory location called x contains the value 4.

Never confuse the following two concepts: value and address (or location). A memory location holds
a value which is the information stored in that location. The address of an item is where itis in

For example, suppose memory location 1234 contains the value 55. If we add 1 to 55 we get 55 + 1
which is 56. That is, we’ve changed the value of a variable. Now, if we add 1 to the address 1234, we

The reason for making this point is that it is all too easy to confuse these two concepts because of the
way we learn algebra at high school. We use equations like x = 4. When we write programs that use
variables, the variables usually refer to the locations of data not to the values. So, when we say x = 4,

N

/

PROBLEM SET 2

The following problems are intended to help you understand the history of the computer. These problems are intended as
discussion points and don’t have simple right or wrong answers. In order to do these questions you will need to read the Web-
based history material that accompanies this text. You will also need to use the web as a research tool.

V5.0
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When did the idea of a computer first occur to people?
What is a computer?

One of the names most associated with the history of computing is John von Neumann. Who was von Neumann? Did

he invent the computer?
When was the first microprocessor created — and by whom?

What was the form of the first memory used by computers (or computing devices)?
Who said (and when) “There is a world market for maybe five computers”.

What was the first hobby computer (personal computer) and when was it built?
Who was Konrad Zuse?

This warning symbol will appear
whenever a particularly
important or tricky concept is
introduced.

“© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part

2|Page




; [WORKBOOK FOR COMPUTER ORGANIZATION AND ARCHITECTURE: THEME AND VARIATIONS]

ADDRESSING MODES

An addressing mode is simply a means of expressing the location of an operand. An address can be a register such as r3, or
D7, or PC (program counter). An address can be a location in memory such as address 0x12345678. You can even express an
address indirectly by saying, for example, “the address is the location whose address is in register r1”. All the various ways of
expressing the location of data are called collectively addressing modes.

Suppose someone said, “Here’s ten dollars”. They are giving you the actual item. This is called a literal or immediate value
because it’s what you actually get. Unlike all other addressing modes, you don’t have to retrieve immediate data from a register
or memory location.

If someone says, “Go to room 30 and you’ll find the money on the table”, they are telling you where the money is (i.e., its
address is room 30). This is called an absolute address because expresses absolutely exactly where the money is. This
addressing modes is also called direct addressing.

Now here’s where the fun starts. Suppose someone says, “Go to room 40 and you’ll find something to your advantage on the
table”. You arrive at room 40 and see a message on the table saying, “The money is in room 60”. In this case we have an
indirect address because room 40 doesn’t give us with the money, but a pointer to where it is. We have to go to a second room
to get the money. Indirect addressing is also called pointer-based addressing, because you can think of the note in room 40 as
pointing to the actual data.

In real life we can’t confuse a room or address in with a sum of money. However, in a computer all data is stored in binary
form and the programmer has to remember whether a variable (or constant) is an address or a data value.

By the way, because there is no means of telling which operand is a source and which is a destination in a computer instruction
such as MOVE A, B and different computers use different conventions, | have decided to write the destination operand in bold
font to make it easier to understand the code. For example, MOVE A, B means that B is moved to A, because A is bold and
therefore the destination of the result.

Let’s look at three computer instructions in 68K assembly language. The operation MOVE DO, D1 means
copy the contents of register DO into D1. The operation MOVE (A0) , D1 means copy the contents of the
memory location pointed at by register AQ into register D1. This is an example of indirect addressing
because the instruction specifies register A0 as the source operand and then this value has to be read in
order to access the desired operand in memory.

Here we’ve used 68K instructions (the 68K instruction set is given as an appendix on page 8). In ARM

assembly language, which is the subject of this Workbook, indirect addressing is indicated by square brackets. For example,
LDR rO0, [r1]indicates that the contents of the memory location pointed at by register rl is to be read and copied into
register r0. Note that the ARM and 68K assembly languages specify the order of operands differently. In the assembly
language we use in this course:

Immediate (literal) addressing is indicated by a ‘#’ symbol in front of the operand (this convention is used by both the ARM
and 68K). Thus, #5 in an instruction means the actual value 5. A typical ARM instruction is MOV x0, #5 which means move
the value 5 into register r0.

Absolute (direct) addressing is not implemented by the ARM processor. It is provided by the 68K and Intel 1A32 processors;
for example, the 68K instruction MOVE 1234, D0 means load register DO with the contents of memory location 1234. The
ARM supports only register indirect addressing.

Indirect addressing is indicated by ARM processors by placing the pointer in square parentheses; for example, [r1]. All ARM
indirect addresses are of the basic form LDR r0, [r1] or STR r3, [r6]. There are variations on this addressing mode;
for example, LDR rO0, [r1, #4]specifies an address that is four bytes on from the location pointed at by the contents of
register rl.
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ADDRESSING MODES EXAMPLE

Let’s clarify addressing modes with a simple example. The memory map below gives the contents of each of the locations of a
simple 16-word memory. Each of these locations contains a 4-bit binary value. We are going to look at some examples of the
effect of computer operations. We adopt ARM-style assembly instructions and assume 4-bit addresses and 4-bit data.

0000 0010
0001 0011
0010 0010
0011 1010
0100 0000
0101 0010
0101 0001
0111 0011
1000 1010
1001 1111
1010 1010
1011 0011
1100 0001
1101 1000
1110 0000
1111 1010

Assume that r1 initially contains 0001 and r2 contains 1000

a. MOV r0,#1100 Literal address Register r0 is loaded with 1100
b. LDR r0, [rl] Register indirect address Register r0 is loaded with 0011
C. LDR x0, [r2] Register indirect address Register r0 is loaded with 1010
d. LDR x0, [rl,r2] Registerindirect address (sumofrlandr2) Register rO is loaded with 1111
e. LDR r0, [r2,#4] Register indirect address (r2 + 4) Register r0 is loaded with 0001
f. LDR r0, [r2,#-4] Registerindirect address (r2 —4) Register r0 is loaded with 0000

As you can see, the processor uses the address in rl or r2 to access the appropriate memory location. ARM processors (like
other processors) are able to perform limited pointer arithmetic. For example, in (d) the effective address is given as [r1,r2],
which is the location pointed at by the sum of these two registers. The sum of r1 and r2 is 0001 + 1000 = 1001, so the contents
of location 1001 (i.e., 1111) are loaded into r0.

Example (e) calculates an effective address by adding 4 to the contents of r2 to get 1000 + 0100 = 1100. The contents of
memory location 1100 is 0001 and that value is loaded into r0. Note that example (f) is almost the same except that the
constant is negative. In this case the contents of location 1000 — 0100 = 0100 (i.e., 0000) are loaded into r0. A negative offset
like this accesses a location at a lower address.
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/ EXAMPLE \

A special-purpose computer has an instruction with a word-length of 24 bits. It is intended to
perform operation of the type ADD r3, #24 where ADD is an operation, #24 is a literal (an actual
number), and r3 is a destination register.

If there are 200 different instructions and 32 registers, what is the range of unsigned integer
literals that can be supported by this computer?

SOLUTION

We know that the number of bits used to represent the instruction, plus the number of bits used
to select a register, plus the number of bits used to specify a literal must be 24. There are 200
instructions. The next power of 2 greater than this is 256. Since 2% = 256, we need 8 bits for the
instruction. There are 32 registers and it requires 5 bits (as 2°= 32) to address a register. Having
allocated 8 bits to the instruction field and 5 bits to the register field, we have 24 —8 — 5 = 11 bits
left over to specify a literal (constant). Consequently, the range of literals that can be handled is 0
to 2047 (as 2 = 2048).

S /

REGISTER TRANSFER LANGUAGE

Before we introduce computer instructions, we are going to define a notation that makes it possible to define instructions
clearly and unambiguously (English language is not a good tool for defining instructions).

Register-transfer language (RTL) is an algebraic notation that describes how information is accessed from memories and
registers and how it is operated on. You should appreciate that RTL is just a notation and not a programming language. RTL
uses square brackets to indicate the contents of a memory location; for example, the expression

[6] = 3

is interpreted as the contents of memory location 6 contains the value 9. If we were using symbolic names, we might write
[Time] = HoursWorked.

If you want to refer to a register, you simply use its name (the names of registers vary from computer to computer — the 68K
has eight data registers called DO, D1, D2, ..., D7, whereas the ARM has 16 registers called r0 to r15). So, to say that register
D6 contains the number 123 we write

[D6] = 123

A left or backward arrow <« indicates the transfer of data. The left-hand side of an expression denotes the destination of the
data defined by the source of the data defined on the right-hand side of the expression. For example, the expression

[MAR] « [PC]

indicates that the contents of the program counter, PC, are copied into the memory address register, MAR. The program
counter is the register that holds the location of the next instruction to be executed. The MAR is a register that holds the
address of the next item to be read from memory or written to memory. Note that the contents of the PC are not modified by

this operation.

The operation [3] « [5] means copy the contents of memory location 5 to location 3.
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The operation [3] « [5] tells us what's happening at the micro level or register-transfer level. In a high-level language this
operation might be written in the rather more familiar form

X =YVYs
Consider the RTL expression
[PC] « [PC] + 4

which indicates that the number in the PC is increased by 4; that is, the contents of the program counter are read, 4 is added,
and the result is copied into the PC.

Suppose the computer executes an operation that stores the contents of the program counter in location 2000 in the memory.
We can represent this action in RTL as

[2000] <« [PC].

Occasionally, we wish to refer to the individual bits of a register or memory location. We will do this by means of the subscript
notation (p:q) to mean bits p to q inclusive; for example if we wish to indicate that bits 0 to 7 of a 32-bit register are set to
zero, we write

[R6(0:7y] <« O.

Numbers are assumed to be decimal, unless indicated otherwise. Computer languages adopt conventions such as 0x12AC or
$12AC to indicate hexadecimal values. In RTL we will use a subscript; that is 12AC.

As a final example of RTL notation, consider the following RTL expressions.

6

T O O T oD
NN NN
o O O O O
T

6
[6]

[6] + 3

[[2]] /z

The symbol “«"is equivalent to the assignment symbol in high-level languages. Remember that RTL is not a computer
language; it is a notation used to define computer operations.

Example (a) states that memory location 20 contains the value 6. Example (b) states that the number 6 is copied or loaded into
memory location 20. Example (c) indicates that the contents of memory location 6 are copied into memory location 20.
Example (d) reads the contents of location 6, adds 3 to it, and stores the result in location 20. Example () is most interesting.
Here, the contents of memory location 2 is read, and that value used to access memory a second time. The new value is loaded
into the contents of memory location 20. This is an example of memory indirect addressing.

Consider the following examples that illustrate the assembly language of four processors and define each instruction in RTL.

Processor family Instruction mnemonic RTL definition

1. 68K MOVE DO, (A5) [[A5]] « [DO]

2. ARM ADD rl,r2,r3 [rl] « [r2] + [r3]
3. 1A32 MOV ah, 6 [ah] « 6

4. PowerPC 1i r25,10 [r25] « 10
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~

RTL AND ASSEMBLY LANGUAGE \
Don’t confuse RTL and assembly language. An assembly language is a human-readable form of a computer’s binary
code. It is designed to be used by programmers and may not always be logical or consistent. Some of you may notice

inconsistencies in the assembly language that we learn in this course.

RTL is a formal notation that can be manipulated like any algebraic expression. It offers a means of precisely defining
operations without using ambiguous English. Consider the RTL example:

Suppose that [4] = 3, [10] =4, and [[10]] =Y.

We can say that y = 3, because we can substitute y = [[10]] = [4] = 3

Similarly, [[4] + [10] + 6] = [3 + 4 + 6] = [13]

V5.0

Quick OVERVIEW OF THE ARM

Before looking at the ARM processor in detail, we provide a very brief overview. The ARM processor is classified as a
32-bit RISC (reduced instruction set processor) with a three-operand register-to-register instruction set. This is just a
fancy way of saying that computer operations involve three operands in registers such as ADD rl, r2, r3. There
are a few instructions that have two operands and some that have four, but that doesn’t change the overall
classification.

In order to get data into and out of registers (transfers between memory and registers), there are two special
instructions called load and store. Load transfers data from memory to a register and store transfers data from a
register to memory. These instructions have the forms LDR x0, [r1] and STR r0, [r1l].As we have seen,
these instructions use register indirect (i.e., pointer-based) addressing. The location of the memory element to be
accessed is held in a register and the addressing mode indicated by [r1].

The ARM uses a special instruction called ADR (load register with an address) that sets up a pointer in the first
place). For example

ADR r0,List ; register r0 points at the list
Later, we will explain why this is a special instruction.
An ARM instruction like SUB r3, r2, #4 subtracts the actual value 4 (remember that the literal is indicated by the
# symbol) from the contents of register r2 and puts the result in r3. Data operations implemented by ARM
processors write the destination (result) operand first on the left. We write the destination operand in bold font to

remind you where the result goes.

Let’s create a very simple example.

MOV xO0, #2 ;Put 2 in register rO

MOV rl, #3 ;Put 3 in register r1

ADD r2,r0,rl ;Add r0 to rl1 and put the result in r2

MOV r4,#10 ;Put 10 in r4 (this is where we are going to store the result)
STR r2, [r4] ; Store r2 in memory location 10

Note how simple all this is. You perform one primitive operation at a time.
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V5.0

Quick OVERVIEW OF THE 68K

Although this text uses the ARM processor family to illustrate an instruction set architecture, we do occasionally refer to
the Motorola 68K family. In brief, the Motorola 68K is a 32-bit processor first sold in 1980. The 68K family later became the
ColdFire family and is now supported by Freescale because Motorola dropped out of the microprocessor market. The 68K

is contemporary with Intel’s IA32. Both the 68K and IA32 have classic register-to-memory architecture.

The 68K has a moderately regular instruction set in comparison with the IA32 architecture. Here, the term regular implies
that if instruction X has addressing mode Y, then instruction P will also have addressing mode Y. The 68K’s main features

are:

e A 32-bit architecture with 32-bit registers.

e  Separate data registers (DO to D7) and address registers (AO to A7). Address registers may only be used as

pointer registers in generating effective addresses. A register indirect is indicated by (20).

e Allregisters are 32 bits wide. However, many operations can act on the lower-order 8 bits of a data register, on
the lower-order 16 bits, or on the entire 32 bits. The data size is indicated by appending .B, .W, or .L to specify an

8-bit, 16-bit, or 32-bit operation. For example MOVE.B DO, (A0).

e  Data registers can take part in all data operations. Address registers can take part only in move, add, subtract,

and compare operations (that is, MOVA, ADDA, SUBA, CMPA).

e  Operations on data registers update the CCR register, whereas operations on address registers (apart from

compare) do not affect the CCR.

e All operations on an address register yield a 32-bit result. You can perform 16-bits additions, subtractions, and

loads on an address register, but the result is always sign-extended to 32 bits.

e 68K instructions are variable length. The shortest instruction is 16-bits. If a single operand is required, the length
may be 16+16 or 16+32 bits. The longest instruction is 10 bytes for a move memory location to memory location

such asMOVE Datal,Data2.
e  The addressing modes are: literal (8-, 16-, or 32-bit constant), absolute (actual address of the operand in

memory), address register based {(A0), (#offset,A0), (D0,A0)}, predecrementing -(A0), postincrementing (A0)+}
e Address register A7 is the system stack pointer and is used to store the return address after a subroutine call. The
instruction RTS implements a subroutine return by popping the return address off the top of the stack and

loading it in the PC.
e Program counter relative addressing is supported. For example, MOVE (PC, #offset) ,DO.

e  The creation and deletion of stack fames is supported by L.INK (create a frame) and UNLK (delete a frame).

A typical fragment of 68K code is:

CLR DO ;clear the total in DO
MOVEA #X,A0 ;A0 points at X

MOVEA #Y,Al ;Al points at Y

MOVE #32,D1 ;32 times round the loop

Loop MOVE (AQ)+,D2 ;jget Xi and increment pointer
MOVE (A1) +,D3 ;get Yi and increment pointer

MULU D2,D3 ;multiply Xi and Yi
ADD D3,D0 ;update running total
SUB #1,D2 ;decrement loop counter
BNE Loop ;Repeat until all done

As you can see, this is not too far from ARM code. The significant difference is the two-operand instruction format.
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V5.0

68K INSTRUCTION SET

Here’s a summary of the 68K operations. We give the mnemonic, name of the operation, addressing modes, and operand
sizes supported (Bytes, Word, Longword).

ABCD
ADD
ADDA
ADDI
ADDQ
ADDX
AND
ANDI
ASL
ASR
Bce
BCHG
BCLR
BSET
BSR
BTST
CHK
CLR
CMP
CMPA
CMPI
CMPM
DBcc
DIVS
DIVU
EOR
EORI
EXG
EXT
ILLEGAL
JMP
JSR
LEA
LINK
LSL
LSR
MOVE
MOVE
MOVE
MOVE
MOVE
MOVEA
MOVEM
MOVEP
MOVEQ
MULS
MULU
NBCD
NEG
NEGX
NOP
NOT
OR

ORI
PEA
RESET
ROL
ROR
ROXL
ROXR
RTE
RTR
RTS
SBCD
Scc
STOP
SUB
SUBA
SUBI
SUBQ
SUBX
SWAP
TAS
TRAP
TRAPV
TST
UNLK

Add BCD with extend

ADD

ADD binary to An

ADD Immediate

ADD 3-bit immediate

ADD eXtended

Bit-wise AND

Bit-wise AND with Immediate
Arithmetic Shift Left
Arithmetic Shift Right
Conditional Branch

Test a Bit and CHanGe

Test a Bit and CLeaR

Test a Bit and SET

Branch to SubRoutine

Bit TeST

CHecK Dn Against Bounds
CLeaR

CoMPare

CoMPare Address

CoMPare Immediate
CoMPare Memory

Looping Instruction

DIVide Signed

DIVide Unsigned

Exclusive OR

Exclusive OR Immediate
Exchange any two registers
Sign EXTend
ILLEGAL-Instruction Exception
JuMP to Affective Address
Jump to SubRoutine

Load Effective Address
Allocate Stack Frame
Logical Shift Left

Logical Shift Right

Between Effective Addresses
To CCR

To SR

From SR

USP to/from Address Register
MOVE Address

MOVE Multiple

MOVE Peripheral

MOVE 8-bit immediate
MULLtiply Signed

MULtiply Unsigned

Negate BCD

NEGate

NEGate with eXtend

No OPeration

Form one's complement
Bit-wise OR

Bit-wise OR with Immediate
Push Effective Address
RESET all external devices
ROtate Left

ROtate Right

ROtate Left with eXtend
ROtate Right with eXtend
ReTurn from Exception
ReTurn and Restore

ReTurn from Subroutine
Subtract BCD with eXtend
Set to -1 if True, 0 if False
Enable & wait for interrupts
SUBtract binary

SUBtract binary from An
SUBtract Immediate
SUBtract 3-bit immediate
SUBtract eXtended

SWAP words of Dn

Test & Set MSB & Set N/Z-bits
Execute TRAP Exception
TRAPV Exception if V-bit Set
TeST for negative or zero
Deallocate Stack Frame

Dx, Dy, -(Ax), -(Ay)
Dn,<ea>, <ea>,Dn
<ea>,An

#x,<ea>, #<1-8>,<ea>
Dy,Dx, -(Ay),-(Ax)
<ea>,Dn, Dn,<ea>

#<data>,<ea>
#<1-8>,Dy, Dx,Dy, <ea>

Bcc <label>
Dn,<ea> #<data>,<ea>

BSR <label>
Dn,<ea> #<data>,<ea>
<ea>,Dn

<ea>

<ea>,Dn
<ea>,An
#<data>,<ea>
(Ay)+,(Ax)+
DBcc Dn,<label>
<ea>,Dn
<ea>,Dn
Dn,<ea>
#<data>,<ea>
Rx,Ry

Dn

<ea>
<ea>

<ea>,An

An #<displacement>
Dx,Dy #<1-8> ,Dy <ea>

<ea>,<ea>
<ea>,CCR

<ea>,SR

SR,<ea>

USP,An, An,USP <ea>,An

<register list>,<ea> <ea>,<register list
Dn,x(An), x(An),Dn
#<-128.+127>,Dn

<ea>Dn

<ea>Dn

<ea>

<ea>

<ea>

<ea>
<ea>,Dn Dn,<ea>
#<data>,<ea>

<ea>

#<1-8>,Dy Dx,Dy, <ea>

Dx,Dy -(Ax),-(Ay)
<ea>

#<data>

Dn,<ea> <ea>,Dn
<ea>,An

#x,<ea>

#<data>,<ea>

Dy,Dx, -(Ay),-(Ax)
Dn

<ea>

#<vector>

TRAPV

<ea>

An

BWL
WL
BWL
BWL
BWL
BWL
BWL
BWL
BWL
BW
BL
BL
BL
BW
BL

BWL
BWL
WL

BWL
BWL

BWL
BWL

WL

w

BWL
WL

BWL
BWL
BWL

BWL
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THE ARM FAMILY

We use the ARM family in this course to illustrate computer architecture for several reasons. First, it illustrates all the
important elements of an instruction set architecture. Second, it is easy to understand and has a very gentle learning curve in
comparison with some other processors; for example an add operation is specified by ADD r1, r2, r3 which adds register r2
to register r3 and puts the result in r1. What could be simpler? Third, the ARM has some very interesting attributes such as
predicated execution that make it an excellent vehicle for teaching computer architecture.

THE ARM REGISTER SET

The ARM has 16 general-purpose 32-bit data registers, r0 to r15, that can be used by the programmer to store temporary
variables. However, registers r14 and rl15 that special purposes. Register r14 holds a subroutine return address after a
subroutine call. Consequently, you should use r14 only to deal with return addresses.

Register r15 holds the program counter, the next instruction to be executed. You cannot use r15 for any other purpose. The
ARM is highly unusual in this respect because all other microprocessor families have a dedicated program counter that is not
normally directly accessible by the programmer. The ARM programmer must not use r15 as a general-purpose data register as
that would crash the computer.

THE INSTRUCTION

Computer instructions are executed sequentially, one by one in turn, unless a special instruction deliberately changes the flow
of control or unless an event called an exception (interrupt) takes place.

The structure of instructions varies from machine to machine. The format of an instruction running on an Intel processor is
different to the format of an instruction running on a 68K or an ARM (even though the instructions might do the same thing).
Instructions are classified by what they do and by the number of operands they take. The three basic instruction types are: data
movement that copies data from one location to another, data processing that operates on data, and flow control that modifies
the order in which instructions are executed. Instruction formats can take zero, one, two, three, or even four operands. Consider
the following examples of instructions with zero to three operands. In these examples operands P, Q, and R may be memory
locations or registers.

Operands Instruction Effect

Three ADD P,Q,R Add R to Q and put the result in P

Two ADD P,Q Add P to Q and put the result in P

One ADD P Add P to an accumulator

Zero ADD Add the top two items on the stack and push the result

A three-address computer instruction can be written

operation destination, sourcel, source?2

where operation defines the nature of the instruction, sourcel is the location of the first operand, source? is the
location of the second operand, and destination is the location of the result. The instruction ADD r3, r1, r7 addsrl
and r7 to get r3.

This is a little pedantic, but... When we say that r1 is added to r7, we really mean that the contents of r1

is added to the contents of r7. However, it gets boring being so precise so we often just use a register’s
name when we really mean the contents of that register.
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Microprocessors don’t implement three-address instructions that access memory; you can access only registers. It’s not the
fault of the instruction designer. It’s a limitation imposed by the practicalities of computer technology. Suppose that a computer
has a 32-bit address that allows a total of 2*2 bytes of memory to be accessed. The three address fields, P, Q, and R needed to
implement ADD P, Q, R would each be 32 bits, requiring 3 x 32 = 96 bits to specify the operands. Assuming a 16-bit operation
code (allowing up to 2'° = 65,536 instructions), the total instruction size would be 96 + 16 = 112 bits or 14 bytes. This
instruction format is shown below.

~ 112 bits R
16 bits 32 bits 32 bits 32 bits
Destination Source 1 Source 2
Op-code address address address

(a) Format of a hypothetical instruction with three address fields

< 32 bits >
17 bits 5 bits 5 bits 5 bits
< Pt———> ————P¢———>

Destination|Source 1| Source 2

Op-code Control bits register register |register

(b) Format of a hypothetical instruction with a register-to-register architecture

Part (b) of the above figure illustrates a typical RISC instruction format. This uses a register-to-register architecture that allows
three registers to be specified. Each has a 5-bit address field which allows 32 registers.

PossIBLE THREE-ADDRESS INSTRUCTION FORMATS

Computer technology developed when memory was very expensive indeed. Implementing a 14-byte instruction was not cost-
effective in the 1970s. Even if memory had been cheap, it would have been too expensive to implement 112-bit-wide data
buses to move instructions from point to point in the computer. Finally, main memory is intrinsically slower than on-chip

register.

The modern RISC processor allows you to specify three addresses in an instruction by providing three 5-bit operand address
fields. This restriction lets you select from one of only 32 different operands that are located in registers within the CPU itself.
By using on-chip registers to hold operands, the time taken to access data is minimized because no other storage mechanism
can be accessed as rapidly as a register. An instruction with three 32-bit operands requires 3 x 5 bits to specify the operands
which allows a 32-bit instruction to use the remaining 32 — 15 = 17 bits to specify the instruction.

We’ll use the ADD instruction to add together four values in registers r2, r3, r4, and r5. In the following fragment of code, the
semicolon indicates the start of a comment field that is not part of the executable code. This code is typical of RISC processors

like the ARM.

ADD rl, r2,r3 ;rl = r2 + r3
ADD rl,rl,r4d ;rl = rl + r4
ADD rl,rl,r5 ;rl rl + r5 = r2 + r3 + r4 + rb
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ADD R1,R2,R3

Implementing a three-address instruction

Registers
Destination
RO operand
R1 12
R2 )
R3 7
R4

TwoO-ADDRESS MACHINES

A CISC machine like, the 68K, has a two-address instruction format. Clearly, you can’t execute P <— Q + R with just two
operands. You can execute Q «— P + Q. One operand appears twice, first as a source and then as a destination. The operation
ADD P, Qimplements [Q] « [P] + [Q]. The price of a two-operand instruction format is the destruction of one of the source
operands.

Most computer instructions can’t directly access two memory locations. Typically, the operands are either two registers or one
register and a memory location; for example, the 68K ADD instruction can be written:

Instruction RTL definition Mode

ADD DO,D1 [D1] <« [D1] + [DO] Register-to-register

ADD P,D2 [D2] « [D2] + [P] Memory-to-register (P is a directly address memory location)
ADD D7,P [P] <« [P] + [D7] Register-to-memory

The 68K has seven general-purpose registers DO to D7; there are no restrictions on the way in which you use these registers;
that is, if you can use Di you can also use Dj for any i or j from0to 7.

ONE-ADDRESS MACHINES

A one-address machine specifies only one operand in the instruction. The second operand is a register called an accumulator
that always takes part in the operation. For example, the one-address instruction ADD P means [A] « [A] + [P].The
notation [A] indicates the contents of the accumulator. A simple high-level operation R = P + Q can be implemented by the
following fragment of 8-bit code (from a 6800 8-bit processor).

LDA P ;load accumulator with P
ADD Q ;add Q to accumulator
STA R ;Sstore accumulator in R

Eight-bit machines have one-address architectures. Eight-bit code is verbose, because you have to load data into the
accumulator, process it, and then store it in memory to avoid it being overwritten by the next data-processing instruction. One-
address machines are still widely used in embedded controllers in low-cost systems.
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/ DATA SIZE \

| don’t want to go into the details of data size here because it’s a large topic. However, | do need to introduce a basic
concept. If a computer can move data from A to B, or can perform an operation on data, we need to know the number of
bits in a word being moved or processed.

The very first microprocessor, the Intel 4004, used a 4-bit word because the technology at that time could not economically
fabricate chips capable of handling longer wordlengths. The 4004 was able to handle 4-bit values.

Very shortly after the introduction of the 4040, 8-bit microprocessors appeared. An 8-bit word is called a byte and
operations in 8-bit computers are applied to bytes. You can’t perform a 6-bit operation and you can’t perform a 10-bit
operation. Although an 8-bit word can handle text efficiently, it is unsuited to the representation of addresses or to any
quantity that can have more than 256 possible values. Eight-bit processors can concatenate two 8-bit words to create a 16-
bit address.

Over the years, microprocessors grew in complexity to support 16-bit, 32-bit and 64-bit words. The larger the word size, the
more work you can do in an instruction. In this course we use ARM processors that have 32-bit data words and 32-bit
addresses.

However, just as 4-bit and 8-bit words are too short to represent many types of data, 32-bit and 64-bit words are often too

big. For example, if you use ASCll-encoded text, each character requires 8 bits. If you put an ASCII character in a 32-bit
register, 24 bits are unused. This represents an inefficient use of storage. So, programmers often employ tricks to pack more

\than one character in a word. /

SuUB-WORD OPERATIONS

If you wish to access individual bytes in a 16- or 32-bit processor, you need special instructions. The 68K family deals with 8-
bit, 16-bit, and 32-bit data by permitting most data-processing instructions to act on an 8-, 16-, or 32-bit slice of a register; for
example ADD.B DO,D1,ADD.W DO,D1 and ADD.IL DO, D1 each adds the contents of data register DO to D1 and puts the
result in D1. The suffix . B specifies an 8-bit byte operation, . W specifies a 16-bit word operation, and .L specifies a 32-bit
longword operation. In each case the bits taking part in the operation are the low-order bits, and bits not taking part in the
operation do not change. For example, the RTL definition of ADD.W D1, D3 is

[D30:15] < [D3(1s] *+ [Dlps)]

RISC processors do not (generally) support 8- or 16-bit data-processing operations on 32-bit registers, but they do support 8-bit
and 16-bit memory accesses. Consider the following ARM examples.

LDR  r0,[rl] ;load rO with the 32-bit contents of memory pointed at by register rl
LDRB rO0, [rl] ;load rO with the 8-bit contents of memory pointed at by register rl
LDRH rO0, [r1] ;load rO with the 16-bit contents of memory pointed at by register rl

There is also a similar set of store mnemonics with the forms STR, STRB, and STRH.

In 68K terminology 8/16/32 bit values are called byte/word/longword, whereas ARM processor literature uses byte/half
word/word.
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Suppose a processor supports operations that act on a subsection of a register. What happens to the bits that do not take part in
the operation? Assume that a register is partitioned as figure (a) demonstrates.

Figure (b) shows how some processors deal with the problem by ignoring higher-order bits. If you add the two-low-order bytes
in a 32-bit word, bits 0 to 7 are added together and bits 8 to 31 remain unchanged; for example, 0x12345678 + 0x11111111 =
0x12345689. This is true of the 68K processor.

Figure (c) demonstrates an alternative arrangement. Here, the bits not taking part in an operation are automatically cleared. In
this case, 0x12345678 + 0x11111111 = 0x00000089.

In (d) the bits not taking part in an operation are sign-extended. This means that if you add two bytes in a 32-bit word, the
result is sign extended to 32 bits. The 68K treats the contents of address registers in this way. If you perform a 16-bit operation
on an address register, the result is sigh-extended to 32 bits.

Unused bits Data to be modified

» & »
» <€ »

A

(a) This represents the data before
the operation. An operation takes
place on a slice of the register.

(b) The simplest arrangement
No change (implemented by the 68K) is to
leave bits not taking part in the
operation unchanged.

(c) Some processors perform an
00 000 operation on a subsection of a
register and clear all bits not taking
part in the operation to zero.

(d) If the data in a register is
SS SSS (S a signed integer, it is necessary
to expand the number by sign
extending it to 32 bits after the
operation.

PROBLEM SET 3

These questions ask you about the role of registers in computer architecture, the role of addressing modes, and the design of
computer instruction sets.

In the context of microprocessors, what is a user-visible register?
Modern microprocessors have more registers than previous generations of microprocessors. Why?

Registers are used in different ways by different microprocessor families (e.g., Intel IA32, Motorola 68K, ARM etc.).
Describe some of the differences in the way in which registers are used and comment on the relative merits.

4. A special-purpose computer’s instruction set is 24 bytes wide. This is a three-operand load and store (register-to-register)
machine. If this computer provides 64 general-purpose registers, how many different instructions can be implemented?

5. A 32-bit computer with a 32-bit instruction word uses 122 different instructions. If this computer has a three-address
register-to-register instruction set, how many registers can be supported?

6. A computer devotes only 4 bits in its instruction word to the selection of one of 16 registers. Can you suggest of ways of
providing more than 16 registers while keeping the number of bits in an instruction that selects a register at 4?
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7.  What are the various groups of instruction types implemented by typical microprocessors (i.e., how are instructions
classified)? Give examples of different types of instructions.

What are the relative merits of one-address, two-address, and three-address instructions?
9. Under what circumstances is it possible to have a zero-address computer?
10. Are there occasions where 4-address or even 5-address instructions could prove useful?

USING THE KEIL SIMULATOR

The processor in the PC is not a member of the ARM family. It’s usually a member of Intel’s IA32 family or an AMD
processor. However, you can run ARM code processor on your PC using a program from Keil™. This can be found at
www.keil.com. The Keil package, called pVision4, is very sophisticated and is intended for engineers designing embedded
ARM-based systems. Consequently,it includes far more facilities than we need. The demonstration version that you can
download for a PC is limited to assembly-level programs smaller than 32K bytes. This restriction is not be a problem for
students.

Essentially, pVision4 is an IDE (integrated development system) that is project-based; that is, each new program must be part
of a project. You begin by creating a project (i.e., a container for all your files) and then select the target processor you are
going to use. You create source files (in our case, these will be assembly language files) and then you build your application
(i.e., create code for your chosen processor). pVision4 allows you to construct projects with multiple source files and files in C
or C++, although we will not be using these facilities. Having built your file, you can execute it and follow the progress of its
execution.

Let’s step through the process of creating a program. Note that this package will continue to be upgraded during its life and
there may be differences between these examples and the system you are using. However, the sequence of operations should
remain substantially the same. On loading pVision4 you are presented with the following screen.

[ E:\CengageBook\Z_ARM\Chap3Ques60.uvproj - pVisiond -0l x|
File  Edit View Project Flash Debug Peripherals Tools 5VCS  Window  Help

P Al & a2 T T ™ T | EE G| A= Y & =-
P %= | B | Target1 A

[ |[simulation | 4

To start, select Project from the upper row of tabs and then New pVision Project from the pull-down window. This brings up
the Create New Project Window and you create a project name in the selected directory. | will use FirstExample. The
development system automatically appends a file type to create FirstExample.uvproj.

When you hit save, a new window will automatically appear that invites you to select the device you are going to use. In this

case it is the ARM (see the figure below). If you select the ARM pull-down window, it will offer various ARM versions. | used
the ARM7 (Big Endian) version. Once you have elected the processor, a return is made to the basic project window.
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Select Device for Target Target 1'... ll

CPU |

Vendor:  ARM
Device:

Toolset:

= e Choose the processor
you wish to simulate
from this list.

ER SR
----- £4 ARM7 (Big Endian)
----- £1 ARM7 (Little Endian)
----- £ ARM9EEE-S (Big Endi
----- £3 ARMBEEE-S (Little En
----- £ ARMSE-S {Big Endian
----- £1 ARMSE-S (Littls Endia

----- £3 Cortex-M1 (Altera)

----- £3 Cortex-M3 = =
e I g

QK I Cancel Help

Selecting the target device

The next step is to create a source file. Click File in the main window. This will open a file window with the default name
Textl. Now you can enter you source program.

After entering the program you need to save it. This is done in the normal Windows way: select file and then save. You then
have to give it a name. | chose FirstExample.asm. Note that | used the extension .asm (assembly langue) because the
development system does not know which type of source file you are creating. The following image shows the screen after the
program has been entered and saved.

_4 :\Cengagel engageWorl il ample.uvproj - pVisio =
[ E:\C Book\G WorkBook\FirstExample. Visiond Ol =
File Edit View Project Flash Debug Peripherals JTools 5SVCS  Window Help
, B3y |9 o == ] SR @ & EH-
Target 1 - & dh |
D FirstExample.asm* > X
o BAREA FirstExample, CODE, READCHNLY j
AT T 1 - -
g; TR < Assembler directives
04 MoV rl, #2 sload rl with 2
05 MOV T2, #3 ;load rZ with 3
] MOV T3, ¥4 sload r3 with 4
07 MOV rd, #5 ;load r4 with &
0g ADD rl, rl, r2 :zdd rl and rZ and put the result in rl
09 ADD rl, rl, r3 :zdd rl and r3 and put the result in rl
10 ADD rl, rl,rd ;add ri1 and rd and put the result in ri
11 MOV rd, rl sput the sum in rg
12
13 END
-
A s
| ||Simu|ation |¢

This program is simple. It loads register with numbers (literals), adds them together and then moves the result into register r0.
Note that there are three lines that are not part of the assembly language. These are assembler directives that tell the assembler
things it needs to know. The first assemble directive is

AREA FirstExample, CODE, READONLY
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The purpose of this AREA directive is to name the region of memory where the program will be located. In this case we’ve
used FirstExample. The parameter CODE indicates that the data will be code rather than data. The third parameter
READONLY indicates that the memory is read-only becausewe are not going to alter its contents.

The ENTRY directive simply tells the assembler that the code is to be executed from this point. It’s the starting point.
The final directive, END, indicates the end of the program and that there is no further code beyond this point.

The next step is to tell the project manager about the assembly file we’ve just created. Click on Project to select the project
drop-down menu and then select Manage. Then select Components, Environment, Books... from the secondary drop-down
window. The figure (below left) shows this situation. Now click Add Files to select your source file. You will have to change
the File of Type box from its default C Source file (*.C) to ASM Source file. Having done that, you should have the situation
below right with one file displayed. Then click OK to end the sequence.

[compmncsts trvromment amdbonke x —r—— x
Proct Compooents | g Execaons | Bodes | Pyt Gompooenty | Faiden Extecaoos | Bodes |
st Tostz. (11 96 [Gean 1% 96 X re et o 111 4.6 [Ceen 1% 96 e
om0 Nioosomae! e

The source file we

created.
— —e= | o e
e ] Y | x| oees | e |

At this stage, we have a project, a processor, and a source file. Now we need to create the environment and assemble the code.
Click on Project and then Build target from the drop-down window. The following image shows the screen after we have
built the target.

|E| E:\CengageBook\GengageWorkBook\FirstExample.uvproj - pVisiond o = |

File Edit View Project Flash Debug Peripherals Tools SVC5 Window Help

Sdd@ a9 I EE ]

E o S Targeti M |
FirstExample.asm l * X
01 BRER FirstExample, CODE, REARDONLY —l
gg ENTRY Note how the assembler has
04 MOV Tl 32 :load rl with 2 / formatted your code. It uses
05 MOV T2,%3 :load r2 with 3 color to distinguish between
e MOV 13,34 load r2 with 4 code and comments and it
07 MOV rd, #5 2load r4 with & . . .
08 ADD  rl,rl, T2 -odd a highlights literals.
03 ADD rl,rl,r3 :zdd d
10 ADD rl, rl, rd sadd nd J
11 MO rd, rl sput Ll

12
12 wun | A
I(I I »

Build Output R x|
Build target 'Target 1°' ;I
assembling FirstExample.asm. ..
linking...
Program Size: Code=32 RO-data=0 BEW-data=0 ZI-data=0
"FirstExample.axf" - 0 Error(=s), 0 Warning(s).
-
Kl I
&
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The Build Output window shows the status of the process. Here we are interested only in the magic words 0 Error (s) that

indicate all went well. Had there been any errors in the code, we would have been informed and would have had to edit the
source file and then rebuild it. This cycle is repeated until there are no errors reported.

The final step is to run the program in the simulator. To do this select Debug from the main window and click on Start/Stop
Debug Session. This brings up the EVALUATION MODE box that tells you are restricted to 32K. Click on OK to bring up
the simulator window as shown below.

|E| E:\CengageBook\GengageWorkBook\FirstExample.uvproj - pVisiond 1Ol =l
File Edit Wiew Project Flash Debug Peripherals Tools SVCS Window Help
NSHd@] 2 o5 : ) ] |
wEe oo o v DEEERA ] E- 8- a-8- - |
|Registers a X||Disassembly n X||5ymbo|s a X|
Register I\.ra||_|e I;| 4: MOV rl,®2 3 Mask: I' ™ Case Sen:
S Current C0x00000000 E3A01002 MOV
: T o s N Addr... | Type |
RO 00000 o: MOV r2, %3 ame Ir... yp
R MDDDD"' 0x00000004 E3RO2003 MOV -0 Simul...
2 MEDDD"' 6t MOV r3,#4 =& FirstE... Application
=3 7 : .|
- A3 00000, OxOOOS?OO_. ESAOBO;E‘T I-IC)’:13 . H-F R.
e 0<00000.. Qaaééoac Esmqoa; HD’:’ - Ad
- RG 00000... 4 | | »
- RE (00000
-~ R7 Q00000... FirstExample.asm - X
HS 0<C0000... | ARFR FirstExample, E:I
R3 0D0D... =] 02 ENTRY =
=] Project | = Registers | ‘l | D
Command a X||L0ca|s a X|
Funning with Code S5ize Limit: 32K - Name Value I
Load "E:\\CengageBook\\GengageWorkBook'\F
*%#% RBeastricted Version with 32768 Byte Co
*%#% Cprrently used: 32 Bytes (0%)
-
4| | 3
>
ASSIGHN BreakDisable BreakEnable BreakKill r@-‘jCaIIStack @Locals i Memory 1
| | 2

We don’t need all this. Using normal Windows features we can resize and remove windows not of immediate importance to get
the following image. We now have three windows. On the left there is a window, Registers, showing the contents of registers.
All values are in hexadecimal. The other items (which have expansion boxes) are not of interest at the moment; these describe
the status of the processor and the value of carry and overflow bits etc.

The window on the top right, Disassembly, is not necessary in this example. We could have closed it but have left it open in
order to demonstrate the structure of the program in memory. This window takes code in memory and transforms it back into
ARM processor op-code and mnemonics. However, should it encounter data (i.e., number or text etc.) it will produce
meaningless code. In this example, you can see each of the instructions. The leftmost column is the memory address, the next
column the 32-bit value (in hexadecimal) at that location. The third column contains the disassembled op-code; for example, at
address 0x0000000C we have the value E3A04005 which translates into MOV r4, #5. Note that this window also contains the
original source code instructions and the line numbers.
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File Edit View Project Flash Debug Peripherals Tools SWCS Window Help

EDBH@ TR 2 LGl @e sal=a]s
HEIEERRIE E.E.@Ev' - Z-m-0-@ - |

|Reg|stels ax ||D|sassembl1r a x|

|\|"a|ue | 4: MOV rl,#2 :load rl with 2 i’
E{)OxOOOOOOOO E3a01002 MOV R1, #0x00000002
00000000 5: MoV r2,#3 ;load r2 with 3
00000000 0x00000004 E3R02003 MOV R2,#0x00000003
00000000 a: MoV r3, §#4 ;load r3 with 4
00000000 Ox00000008 E3A03004 MOV R3,#0=x00000004
00000000 T: MoV r4, 5 ;load r4 with 5
3<00000000 0x0000000C E3RA04005 MOV R4, #0x00000005
3<00000000 g: ADD rl,rl,r2 sadd rl and r2 and put the result in ril
00000000 0x00000010 EO0B811002 ADD R1,R1,R2
00000000 9: ADD rl,rl,r3 ;add rl and r3 and put the result in rl
00000000 0x00000014 EO0B11003 ADD R1,R1,R3
00000000 10: ADD rl,rl, r4 ;add rl and r4 and put the result in rl
300000000 Ox00000018 EO811004 ADD R1,R1,ER4
3<00000000 11: MOV ro,rl ;sput the sum in r0
3<00000000 0x0000001C E1AQODO01 MOV RO,R1 _ILI
oxoooooo0 (L1 >
angg FirstExample.asm * X
xD0000000 iy RREZ FirstExample, CODE, READCNLY j
a2 ENTEY
03
os | MOV rl, %2 :load ri with 2
05 MOV r2, 3 ;load r2 with 3
i MOV r3, 4 :load r3 with 4
o7 MOV rd, §5 :load r4 with §
0g ADD rl, rl, r2 sadd rl and rZ and put the result in ri
<00000000 09 ADD rl,rl,r3 ‘:add rl1 and r3 and put the result in ri
Supervisor 10 ADD rl,rl,r4 :add rl and ré and put the result in rl
0 11 MOV ro, rl ;put the sum in rd
0.00000000 12
13 END
| -
E Project | = Registers JLI_I LIJ
| [Smutstin |

The window below is the same as above except that we’ve closed the disassembly window and resized to reduce clutter.

E:\CengageBook\GengageWorkBook\FirstExample.uvproj - pVisiond

Eile

Edit Wiew Project Flash Debug Peripherals Tools

SVCS  Window Help

=0l

==l

ASE R e

| Bl d

ca|

S EHO BEOD 2 D@E.@Ev

EN EEE

Register Value * 01 RRER FirstExample, CODE, READCHLY j
1+ Current 0z
- R 00000000 03
R1 00000000 D4 | MOV T1,%2 ;load rl with 2
R2 (00000000 05 MOV T2, %3 ;load rZ with 3
A3 00000000 0 MOV r3, ¥4 rload r3 with 4
- R4 00000000 07 MOV T4, %5 ;load r4 with §
R5 Q00000000 08 ADD rl,rl, r2 zdd rl and r2 and put the result in ril
- RE e DO000000 09 ADD rl,rl,r3 ;add rl and r3 and put the result in ril
- R7 cDDOO0000 | 10 ADD rl,rl,rd ;3dd rl and r4 and put the result in ri
- RE e DO000000 1 MOW rd, rl sput the sum in ro
RS 00000000 12
-~ R10 DO000000 13 ENL
- R11 00000000
~—R12 DO000000
- R13 (SP) e DO00D000
~ R14 (LR) {bd]DDDDDDD
- R15(PC) =
D Project | & Registers | h | | _'lJ
||simulatia|
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; [WORKBOOK FOR COMPUTER ORGANIZATION AND ARCHITECTURE: THEME AND VARIATIONS]

The final step is to run the code. We can run it in several different ways. Here, we are going to execute it line by line so that we
can observe the way in which the contents of the registers change after each instruction. In the image below, we have clicked
on the step one line icon (highlighted in the image) and the first instruction has been executed. Note that in the register list, r1
is highlighted and it has the value 2 (because it was loaded with 2). The contents of the program counter, r15, are 4 because it
now points to the second instruction.

|E| E:\CengageBook\GengageWorkBook\FirstExample.uvproj - pVisiond oy ] 4

File Edit VWiew Project Flash Debug Peripherals Tools SVCS  Window Help

DESdd|+ £} . o all
‘o RO R EIENEE JE@ a- - W - ‘ Note that executing the first

instruction has loaded r1 with 2

i I
Registers FirstExample.asm ] (i.e., 0x00000002)
0 BREZ FirstExample, CCDE, READCHLY —
02 L
rl, $2 sload rl with 2
—— r2, ¥3 ;load rZ with 3
A3 00000000 r3, $#4 sload r3 with 4
R4 00000000 T4, %5 ;load r4 with &
- R5 cDDO00000 rl, rl, r2 :zdd rl and rZ and put the result in ri
- RE cDDOOO000 rl,rl,r3 ;add rl and r3 and put the result in ril
- RT Q00000000 rl,rl,rd ;3dd rl and r4 and put the result in ri
- RE (00000000 P ro, rl ;sput the sum in ro
-+ R9 00000000
- R10 00000000
R 00000000 This is the step-in icon. Click
- R12 00000000 - : Lo
~-R13 (SP) BD0000000 on it and one instruction is
- R14(LR)  (<0DO00D000 executed.
= R15 (PC) (00000004 -
jPr:uect | = Repisters JLI_I _'lJ
| ||simulatia|

The next image shows the screen after we have clicked the step-in button five times and have executed the first five
instructions.

[ E:\CengageBook\GengageWorkBook \FirstExample.uvproj - pVision4 =10l x|
File Edit VWiew Project Flash Debug Peripherals Tools SVCS  Window Help
DEdd| > o | ) Ll @e ©e]
G EO BEve o > OB BE & - - - ‘
Registers ax FirstExample.asm ] 3
Register Value - 01 AREL FirstExample, CCDE, READCONLY j
- Curmrent 02

- RO 00000000 03

00000005 K MOV rl, #2 ;load rl with 2

e B2 00000003 MOV 2, %3 sload r2 with 3

B3 (k00000004 ad r3 with 4

R 00000005 ad ré with §

e R 00000000 d rl and r2 and put the result in ril

- RE 00000000 d rl and r3 and put the resvplt in ri

e BT 00000000 | d rl and r4 and put the result in ril

- R8 00000000 it the sum in r0

- RY 00000000

R0 00000000

- R 00000000

- R12 00000000 P H H

RI3(SP) 00000000 This is the situation aﬂgr the ADD rl,rl,r2

R4 (LR) 000000000 has been executed. Register rl initially contains 2

i R15(PC) (00000014 and r2 contains 3. After the addition rl contains |
*

jPr:uect | & Registers JLI_I 2+3 =5.

- | |[simutatio]

Note that you have to click on Debug and then Start/stop Debugging Session to get out of the debug mode.
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USING THE KEIL SIMULATOR: A SECOND EXAMPLE

Let’s now look at a more realistic example of the use of the simulator that includes both a loop and an example register indirect
addressing. We are going to add together five numbers stored in memory.

AREA Pointers, CODE, READONLY

ENTRY

Start ADR r0, List ;register r0 points to List
MOV rl, #5 ;initialize loop counter in rl to 5
MOV r2, #0 ;clear the sum in r3

Loop LDR r3, [r0] ;copy the element pointed at by r0 to r3
ADD r0,r0, #4 ;point to the next element in the series
ADD r2,r2,r3 ;add the element to the running total
SUBS «rl,rl,#1 ;decrement to the loop counter
BNE Loop ;repeat until all elements added

Endless B Endless ;infinite loop

List DCD 3,4,3,6,7 ;the data (five 32-bit words)
END

-

A COMMENT ON PROGRAM LAYOUT \

When writing an assembly language program, column one is reserved for a user-defined name that allows us to refer to
that line (more specifically, it corresponds to the address of that line in the program when it’s been assembled into
machine code). In this example, the four labels are Start, Loop, Endless, and List. Actually, Start, isa dummy
label in the sense we never refer to it. | added it simply to demonstrate that we can label a line just for the programmer
(this indicates the start of the program).

Anywhere after column one, we can write an instruction. The only rule is that there must be at least one space following
the mnemonic, and that parameters must be separated by commas. Spaces after a comma are optional; for example, we
can write

ADD rl,r2,r30r
ADD rl, r2, r3

Finally, we can append a comment to the right. The assembler we are using requires a semicolon to separate it from the
K code_ Althoush we don’t have to write a nrosram in columns as we’ve done above . it makes the nrosram easier to read. /

The executable code consists of three parts. The first part beginning with the label Start sets up the environment. The
instruction ADR r0, List is a pseudo instruction that loads the 32-bit value of List into register r0. List is a label that
refers to the five items of data in memory. What is the value of 1.i st? That’s something the programmer doesn’t have to
worry about; the assembler’s job is to convert labels into their actual values. However, in this case it is easy. The assembler
begins at address zero and each instruction occupies four bytes. The code consists of eight instructions which occupy 8 x 4 =
32 bytes. Consequently List refers to location 0x00000020.

The two move instructions initialize a loop counter (we are going to go round five times), and set the initial total to zero.

The body of the code which we’ve printed in blue performs the actual addition. The LDR r3, [r0] instruction loads register
r3 with the contents of the memory location pointed at by r0. Since we initialized r0 to pointto List, we will first access the
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value 3. Then, we increment the pointer in r0 to point to the next word in memory to be added. This lets us step through the

sequence of five numbers.

The next step is to add the value of r3 we’ve just read to the running total in register r2 using ADD r2, r2, r3.

Finally, the instruction SUBS r1, r1, #1 subtracts 1 from the loop counter in r1, which goes from 5 to 4 on the first cycle
round the loop. The S on the end of SUB tells the processor to update the condition codes (carry, zero, negative, overflow) at

the end of the subtract operation. The next instruction, BNE Loop, tests for the zero condition that we get when the loop count

goes from 1 to 0. If the loop count is not 0, the BNE (branch on not zero) forces a jump to the line labeled by Loop and this
block of code is executed again. If the loop count is 0, we have finished the loop and fall through to the next instruction.

There’s nothing for us left to do, so we “jam” the computer by inserting the B Endless instruction. This is an unconditional
branch (jump) to the line labeled by Endless. Because a jump is made to this line, the operation is repeated endlessly. This

is a classic way of stopping a simulation.

Following the executable code, the assembler directive DCD (define constant data) allows you to preload data into memory
before the program runs. In this case, the values 1, 4, 3, 6, and 7 are each loaded into memory as a 32-bit value.

The following snapshot demonstrates the state of the program after it has been loaded the project Build target function used

to perform the assembly.

Iﬁl E:\CengageBook\GengageWorkBook\ SecondExample.uvproj - pVisiond

=10l x|

File Edit Wiew Project Flash Debug Peripherals Tools SWVCS Window Help
BEE PR TR Sl AL
@ kAN Target1 *M
Click on the Debug tab to get the
[ ] SecondExample.asm T~ Start/Stop Debug Session command, and
i then click on it. This will display the
0z LREL Fointers, CODE, READONLY debug window.
03 ENTEY
04 Start LDR rD,List ;register r0 points to List
05 MOV rl, %5 ;initialize loop counter rl to &
06 MOV r2, %0 ;clear the sum in r3
07 Loop LDR r3, [r0] ;oopy elsment pointed at by r0 to r3
na ADD 0, r0, %4 ;point to next element in series
09 ADD r2, r2, r3 ;add the =lement teo the running total
10 SUBS rl,rl,#%1 ;sdecrement to the loop counter
11 BNE Loop ;repeat until 211 elaments added
12 Endless B Endless ;infinite loop
13 List DCL 3,4,3,6,7 ;the dats (five 32-bit words) I
14 END
15 hd
NN _"I_I
| |

The next snapshot shows the result of entering the debug mode. For clarity, we have removed some of the windows that are not

needed.
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Some of the .
debugging Disassembled
engageBook\GengageWorkBook\SecondExample.uvp sion4 e code window. 1ol x|
File Edit Wiew Project  Flash Debug Peripher; Tools SVCS W .
=1" ¢ EEELD d EEIFIERET I ERIRS
wEo e v REEwE-0-83-8-2-0- % | \
Registers a3 isassembly a X|
Register Value 4: Start ADR r0,List sregister r0 points to List ﬂ
= 0x00000000 E28F001C ADD RO, PC, #0x0000001C
- Current
00000000 5: MOV rl, #5 sinitialize IRop counter rl to 5
500000000 0x00000004 ESA01005 MOV R1,#0x00000005
00000000 &t MOV r2, %0 rclear the sum i?
500000000 0x00000008 ESA02000 MOV R2,#0x00000000
300000000 T: Loop LDR r3, [x0] scopy element pointed at\by r0 to r3
0x0000000C ES903000 LDR R3, [RO]
00000000 ’ R
500000000 e ADD  ro,r0, %4 :point to next element in =y INStruction generated by the
300000000 0x00000010 E2800004 ADD RO,RO,#0x00000004 pSEUdO operation
9: ADD r2,r2,r3 radd the element to the runr
(00000000 reer i 1
00000000 0x00000014 EO0822003 ADD R2,R2,R3 ADR ro’ List.
00000000 10: SUBS rl,rl, #1 ;decrement to the ld_
00000000 0x00000018 E2511001 S5UBS R1,R1,#0x00000001
300000000 11: ENE Loop srepeat until all elements added
300000000 0x0000001C 1AFFFFFA ENE 0x0000000C
12: Endless B Endless :infinite loop
"""" R14 (LR (00000000
_______ R15{Pci 00000000 /10x00000020 EAFFFFFE B 0x00000020 The constants
& CPSR 00000003 ixiiiiiif" ;iii;ii: *LE:E :iiii: 4/ created by DCD.
B SPSR b .Dx.ﬂljljljljljf; .:lljljljl:l.jlj’ B ;D'Z{lj(_?’
B User/System 0x00000¢ 2C  000000( 3 RO, RO, R3
_____ 0x00000030 00000006 RO, RO, R6
E-- Fast Intemupt - P -
B Infemupt \_0x00000034 00000007 ANDEQ RO, RO, R7 -
[ Supervisor _I‘ _I >
[] ..... Abort
s
B Undefined D SecondExample.asm hd
= m o
(00000000 02 ARER Pointers, CODE, READCHLY =
Supervisor 03 ENTEY
[i] 004 Start ADR rh,List ;register r0 points to List
0.00000000 05 MOV rl, #5 sinitizlize loop counter rl to §
06 MOV r2,#0
07 Loop LDR r3, [r0D]
08 ADD rD, r0, $4
03 ADD r2, r2,r3
10 SUBS rl,rl,#1
11 BNE Loop
12 Endless B Endless :
13 List OCD  3,4,3,6,7 : £} {five 32-bit words) e
—— 14 END -
=] Project | = Registers |4| | 4
|Command a X|
*#*% Error: 'C:\Keil\ARM\BEIN\DARMO.DLL' not found -
Running with Code S5ize Limit: 32K
Load "E:\\CengageBook\\GengageWorkBook\\5econdExample BXF"
#%% Restricted Version with 32768 Byte Code 5ize Limit
:If‘f Currently used: 56 Bytes (0%) _ILI
4 3
>
LS5IGN BreakDisable EreakEnable BreakKill EreakList BreakSet EBreaklccess COVERAGE DEFINE DIR Display Enter |
| ||Simu|atior1 |4

There are two notable features. First, the pseudo operation ADR r0, List has been translated into the actual instruction
ADD r0,PC, #0x0000001C. A pseudo operation uses existing instruction to create an operation that loads a 32-bit value
into a register. The assembler might generate different code on different occasions.

A second interesting feature also appears in the disassembly window. You can easily recognize the program in this window.
However, the data values stored by the assembler in memory (i.e., 5, 5, 6, 7) are read by the disassembler and translated into
instructions. In this case the first value, 5, corresponds to the code for ANDEQ r0, r0, r3). Of course, this code is nonsense.
However, the disassembler does not know this; it just translates anything in memory into an instruction.
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We are now going to create a memory window. To do this, click on View then select Memory Window and then Memory 1.
Enter the starting address in the Address box in the memory window (which is 0) and hit return. This produces the display as
shown below. In the memory window we can see both the code and data. Note that | have resized the memory window (it may
have a different number of bytes per line on your system). You can drag the edge of the memory window to display as many or
as few bytes per line as you require.

1% \CempageBonk |GengageWnrkBook' Secondi xampleuvyru) - g¥isiond = 108
Dle fde Wew Proja Fash Deoug  Feppheals Jook BACS- Window Hep )
ddd , = - Rje ce[Sfs
F OO by ¢ ORIEGI[E]2- 8- 3-8 -
| Regirters - 0 X || Dumsemddy - —— : 0 ox/
([ Rogaser ] 4: Starz ADR z0,list rx 3
I G x00000000 E28F0QIC. ADD
o 5¢ MOV el 8
RO
Al o ,
A2 Select “View’ tab then ’
q3 200000
P memory then memory 1 to
- select memory window.
]
a7
1]
7o
Al
an
a12 atil all elements added
A1 5P
A140L5
RIS F0
4 PR
SPSA 000000030
U/ Systar
& Fadt temupt
£ temat -
= Supervisor 2
= Aot v x|
# Undefined ] SecandExampleasm !
= ey n T
s 00000000 mw AREA Pointers, CODE, READONLY =1l
Mode Scpaneacd m INTRY
Qutes 0 {504 Braxz 2D r0,Lisc sresistar 0 paints ©o Lirt
Sec 0 02000000 {13 oV |5 % nitisliz= lcop = tuyr 7
(1 N 2,80 clear the ® 1a 2
U7 Leep LDR 3, [20] cupy elmaent pointed at *D t
o ADO 2O, r0, 84 pPoint to mext slament in smriss
o ADO £2,t2,r3 add che slepent 30 Che
10 SUBS ri,r1, 0 jecrement 2o the loog ex
n nRy ooy Jeepeat rsl a2l slegsents added
12 Endless D Endless -
13 Lisc e 1,8,3,€,7 . taca (£1 2-pir voras) =1
! | 14 ZNT -
iad Mo ject Elogmml el 8
[Commang o x|
Bumning vith Code Jize lLaimit: 32K —:]
Load \CengageBaoki\GengageNorkBook\ \Seconaxarple . AXF"
Size Limiv _]
of
>
ASSIGH BreakDisable Srestfzable Oreakfiil Oreakliists Breskles BresciAccess COVERAGE OEFINE DIR Displsy Enter J
' — _ sewmston

i
n
1C E3 A0 10 05 E3 RO 20 00 90 30 00 E2 80 00 04 EOQ 82 20 03

Ox00000000:

01 1& FF FF FA EA FF FF FE |00 00 00 03|00 00 00 O4 00 00 00 03 ~

0x00Q000018:
0x00000030:

06 00 QO 0OQ ©O7 OO0 QO OO OO OO 00 OO0 O 00 00 00 00 00 00 00 Memory window
00 00 OO OO OO OO OO OO0 OO0 OO0 00 00 00 00 00 00 00 00 00,00

0o 00 00 OO OO OO0 OO0 OO0 00 00 00 00 00 00 00 00 OO0 00 00/ 00
00 Q0 QO 0OQ QO OO0 QO OO0 00 00 00 00 00 00 00 00 00 Q00 0g 00
00 Q0 QO OO QO OO0 QO OO0 00 00 00 00 00 00 00 00 00 00 Op 00

0x00000048:

0x0Q0p007TE:
0x00080030:

0x0000p0AS 00 00 00 00 00 00 00 00 00 00 00 00 bo 0o 0o o0 oo oo go oo =l
\ \ 1
- \ Starting address of the region Beginning of the The address of this byte is 0x00000047.
Starting address of of memory displayed. ki s Why? The first byte is at 000000030
each line of data. : and this byte is 23 bytes on.
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Let’s now run through a debug session with this program. The snapshot below shows the screen after we have executed the
first three instructions. You can see that r0 is loaded with 0x24 (the start of the data area), rl contains 5, and r2 contains 0
(note, we have to clear r2 to 0 in the code because, in a real system, r2 will probably not contain O at the start of a block of
code). Failure to initialize registers is proably the most common error that students make when writing assembly language

programms.

The next instruction to be executed is highlighted in both the program and disassembly windows.

|E| E:\CengageBook\GengageWorkBook\SecondExample.uvproj - pVisiond =10l x|
File Edit View Project Flash Debug Peripherals Tools | SVCS | Window Help
DSdd]|: & : ) L]l @e S&lF
FEEIE IR ECEE=EE g-E- -
|Registers 1 x ||Disassembly a X|
Register |‘u"a||.|e I 4: Start ADR r0,List sregister r0 points to List i’
TG 0x00000000 E28F001C  ADD ~ RO,EC, $0x0000001C
_______ RO 00000024 5: MOV rl, #5 sinitialize loop counter rl to 5
_______ R 00000005 0x00000004 E3R01005 MOV . R1,#0x00000005 . )
_______ R2 300000000 I HoV r2, %0 ;clear the sum in r3
,,,,,,, R3 00000000 0x00000008 E3R02000 MOV R2,#0=x00000000 _
7: Loop LDR r3, [xd] ;copy element pointed at by r0 to r3
E{}OKOOOODOOC E5503000 LDR R3, [RO]
8: ADD r0,r0, #4 ;point to next element in series
0x00000010 EZ800004 ADD RO, RO, #0x00000004
9: EDD rZ2,r2,r3 sadd the element to the running total
0x00000014 EQ0822003 2ADD R2,R2,R3
10: S5UBS rl,rl,#1 rdecrement to the loop counter
0x00000018 E2511001 SUEBS R1,R1,#0x00000001
11: BNE Loop srepeat until all elements added
0x0000001C 1AFFFFFA BNE 0x0000000C
12: Endless B Endless ;infinite loop
0x00000020 EAFFFFFE B Ox00000020 P
; KN ;I_I
[ [User,-’S‘,'stem SecondExample.asm v X
[ Fast Intemupt 01 =
B Intsmupt 02 LREL Pointers, CODE, READONLY =
#- Supervisor 03 ENTRY
- Abart 04 Start LDR r0,List ;register r0 points to List
- Undefined 05 MOV rl, #5 ;initizlize loop counter rl to &
B Intemal 06 MOW r2, %0 ;clear the sum in r3
e PC & 0000000C —>07 Loop LDR r3, [rD] socopy element peointed at by r0 to r3
~ Mode Supervisor 08 ADD ro, r0, ¥4 spoint to next =lement in series
- States 3 09 ADD 2, r2, r3 sadd the slsment to the running total
........ Sec 0.00000000 10 SUBS rl,rl,#1 ;decrement te the loop counter
11 BNE Loop ;repeat until 311 elements addsd
o»12 Endless B Endless sinfinite loop
13 List DChD 3,4,3,6,7 ;the data (five 32-bit words}) b
14 END -
=] Project | 5 Registers [« | LI_I
||Simu|atior1 |¢

The next snapshot shows the state of the simulator after we have nearly completed one trip round the loop and are at the last
instruction, the branch to Loop on not zero. The value of r0 is 28 (i.e., 24 + 4) because we are pointing at the next data item.
The value of rl (the loop counter) is 4 because we’ve decremented it on this trip. The value of r3 is 3 because we’ve loaded the
first number, and the value of r2 is three because the sum contains only one number so far.

The final snapshot for this example just shows some of the registers and code. Rregister r2 now holds the sum of the five
numbers in memory. The value of rO contains 0x38 which the next location after the five numbers (24 + 5 x 4 = 38 using

hexadecimal arithmetic).
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File Edit View Project Flash Debug Peripherals Tools 5VCS  Window Help
REFIEET E) Ll @e  ce&lH
wPBo nron @ ORBEE:2- Ehd _MESSdE
|Regislers X ||Disassembl1r a X|
Register |va|ue I 4: Start ADR ro,List sregister r0 points to List i’
G 0x00000000 E28F001C  ADD RO, PC, $0x0000001C
200000028 EH MOV rl, #5 sinitialize loop counter rl to &
TD0000004 0x00000004 E3R01005 MOV R1, #0x00000005
a: MOV r2, %0 sclear the sum in r3
0x00000008 E3R02000 MOV R2, #0x00000000
7: Loop LDR r3, [xO] ;copy element pointed at by r0 to r3
0x0000000C ES803000 LDR R3, [RO]
a: DD rd,r0, #4 ;point to next element in series
0x00000010 EZ2800004 ADD RO, RO, #0x00000004
9: noo r2,r2,r3 sadd the element to the running total
0x00000014 EO0822003 ADD RZ,R2,R3
10: SUBS rl,rl,#1 ;decrement to the loop counter
Ox00000018 E2511001 5UBS R1,R1,#0x00000001
11: EBNE Loop srepeat until all elements added
_______ R13(SF) 00000000 E{}OKOOOODOIC 1AFFFFFA BNE 0:{00(_]00(_)0?
_______ R14(LR) 00000000 12: Endless B Endless ;sinfinite loop
I . = 0x00000020 EAFFFFFE B 0x00000020 =
= LI_I
[#-- SP5R 00000000
B User/System SEOTIEEL TR v X
- Fast Interrupt =
B Intemupt LREAR Pointers, CODE, READONLY i—
[ Supervisor ENTRY
- Abort Start ADR r0,Li=st ;register r0 points to List
B Undefined Mo rl, #5 ;initialize loop counter rl te §
B Irtemal MOV 2, #0 ;clear the
eD0D000IC Loop LDR 3, [rD] FCOopy 1
Supervisor ADD rl, rD, $4 ool t
] ADD r2, r2,r3 sadd e
0.00000000 SUBS ri1,rl,#1 rdecreme
BNE Loop ~repea nt
Endless R Endless ;infinite loop
List DCD 3,4,3,6,7 rthe data (five 32-bit words) b
END -]
] Project | = Registers 4

Indents selected text left one tab stop

|[simulation

| 2

g =l

File Edit View Project Flash Debug Peripherals Tools 3VCS Window Help
BEEFIPER - A L@ e & elE
PO Bro0 v DREE-E[E]2-E- - -

| Registers X |

SecondExample.asm l

*

Startc

AREAR Pointers

ENTEY

LDR  rO,List
rl, #5
r2, %0
r3, [r0]
r0, r0,#

....... =] 00000000 Endle=ss Endle=ss
------- R1D 00000000 13 List Dco - 3, 4,3,86
------- R11 00000000 || (|| 14 ENED
- 1
[E]l Project | = Registers K r |

CODE, READONLY

r

I*]

;register rl points to List
sinitizlize loop counter rl to B
;clear the sum in r3
;copy element pointed at by r0 to r3
4 ;point to next slement in series
;add the element to the running total
sdecrement to the loop counter
srepeat until a1l elements added
wgfinite loop
7 ;th= 3 1

V5.0

The sum of the five elements is in
register r2. This is 0x00000017 or
23 decimal. The five elements are
3,4,3,6,7 and their sum is indeed 23.
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Let’s look another program that uses pointer-based addressing to access memory. The snapshot below illustrates a program that

adds together pairs of elements

of two vectors X and Y, and puts the result in Z; that is, it performs z; = x; + y; for i =0 to 3.

|E| E:\CengageBook\GengageWorkBook\ ThirdExample.uvproj - pVisiond =10l x|
File Edit Miew Project Flash Debug Peripherals Tools SVCS  Window  Help
a9 ™ = E G B - Q
S Targetl - 5% ﬁ'ﬁcCIearAll Bookmarks (Ctrl+Shift=F2)
Clear all bookmarks in the current
ThirdExample.asm document R
01 ABER Vectorfddition, CODE, READONLY j
02 ENTIERY
03 Start MOV rD, ¥4 sfour =lements to add r0 is the counter
04 ADER rl, ¥ ;rl points to X
05 ADER r2,¥ ;r2 points to ¥
05 ADER r3,Z ;r3 points to Z
07 Loop LDR rd, [rl],#4 :Repeat get =lement of X and update pointer
0g LDR r5, [r2], %2 get element of ¥ and update pointer
09 ADD rd, rd, r5 : add the tweo lelsments
10 STR rd, [r3], %4 H store result in £ and uddate pointer
11 SUBS r0,rD,#1 : decrement leoop counter
12 BNE Loop sUntil all elsments done
13 Me E Me ;infinite loop
14
15 ABER VectorAddition, DATA, BEADWRITE
16 X DCD 1,2,3,4 ;sdata for array X
17Y DCD 3,4,5,6 ;sdata for arrav ¥
18 Z DCD 0,0,0,0 ;sdummy data for arrav 2
19 EHNLD —
e _>IJ
| |

We’ve defined two data areas: AREA VectorAddition, CODE, READONLY where the program code is located, and

AREA VectorAddition,

DATA, READWRITE. The parameters CODE and DATA refer to regions of memory that

contain code or data, and the parameters READONLY and READWRITE indicate that the region of memory space can only be
read (as in the case of the program), or can be both read from or written to (using parameter READWRITE).

Once the program is ready to run, you select Debug and Start/Stop Debug Session in the normal way. We then have to
perform an additional step to indicate that the data memory is writable. Click the Debug tab and then the Memory Map tab.

The Memory Map below shows the situation with the address range 0x00 to 0x5B defined as both executable and readable

memory. We need to define loc

ations 0x38 to 0x5B as writable locations. To do this, enter the values in the Map Range box

and tick Read and Write.
e
s
B S I R S e—— =] Cumert Macped
- 0. 00002000 - D070058 =anc e -
The image on the left shows the Memory Map box after ~~ |*7 X000 G000t mmemse -
we’ve entered the read/write range. Now click the
=l | Close tag.
Man R on - Borsle: IedDNOXNQ IcdDNFFFF {54y Soen
oot ~ Mg Rarrgw - Furrphe (o3 0000000, INSO0FFFE ——————
M Pt I
¥ bz
™ Becute Moy Rt i R
I Wins
T | Heo | T~ Euecue i =ora
Coes I
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The final three snapshots for this example show, in order, the initial memory map, the state of the system during execution,

and the final memory map.

The initial memory map shows the code from 0x00000000 to 0x0000001B, and the data area starting at 0x0000002C. The
snapshot is taken at the end of the first cycle of iteration. The three pointer registers are loaded with addresses that are four
bytes greater than the start of the three vectors, because auto-incrementing is used and the pointer is increased after it has been
used. The final memory map shows the source data in read and the data written back to memory in green.

Address: [00000000 1
0x00000000: EZ AOQ 00 04 EZ2 8F 10 20 E2 8F 20 2C E2 8F 30 38 E4 91 40 04 E4 92
0x00000016: 50 04 EO 84 40 05 E4 83 40 04 E2 50 00 01 1a& FF FF F9 EA FF FF FE
0x0000002C: 00 00 00 01 OO OO0 00 02 00 OO0 00 03 00 00 00 O4 00 OO0 00 03 00 00
O0x00000042: 00 04 00 OO0 0O 05 00 00 00 O6 OO0 00 OO0 OO0 00 00 00 00 00 00 00 00
O0x00000058: 00 00 OO0 OO0 OO 00 00 00 OO0 OO0 00 00 OO0 OO0 00 00 00 00 00 00 00 00
O0x0000006E: 00 0O OO0 OO0 OO0 00 00 00 OO0 00 00 00 00 OO0 00 00 00 00 00 00 00 00
Ox00000084: 00 00 OO OO OO 0O 00 00 OO0 OO0 00 00 00 OO0 00 00 00 00 00 00 00 00
O0x000000%A: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 _:J

-0l x|

File Edit Wiew Project Flash Debug Peripherals Tools SWCS  Window Help
BEFEITET: = IE G| @ LrRe ca[@]A
EEBO wron v DRBEeA[E]3-8-2-8- x|
Registers a4 x ThirdExample.asm l v x

Register Walue - o RAREA Vectorhddition, CODE, READONLY j
= Cuorent o ENTRY

... Ty 00000003 03 Start MOV r0, #4 ;four elesments to add r0 is the counter
R1 (00000030 04 LDR rl, X ;rl points to X

....... R2 (< 00000040 05 LDE r2, Y ;rZ2 points to ¥

------- R3 (00000050 06 ADR  r3,Z

....... R4 00000004 07 Loop LDR rd, [rl], %4

....... R5 (00000003 08 LDR r5, [r2], %4

------- RE (00000000 g ADD  r4,r4,rd

"""" R7 (00000000 10 STR  r4,[r3], %4

------- R8 00000000 il SUBS r0,r0,#1

------- R9 wooooo000 | (5212 | BNE  Loop

....... R10 ke DOO0DD00 13 Me B Me ;sinfinite loop

------- R11 (00000000 14

------- R12 (00000000 15 AREA VectorRddition, DATA, READWRITE

------- R13(SP) (00000000 1B X pct 1,2,3,4

------- R14(LR} (000000 17 3 peo - 3,4,5,6

S pco 0,0,0,0 z

END

||Simu|atior1

Address: [00000000 il
Ox00000000: E3 AD 00 04 EZ2 B8F 10 20 E2 8F 20 2C EZ2 8F 30 38 E4 91 40 04 E4 892
Ox00000016: S50 04 EOQO 84 40 05 E4 83 40 04 EZ2 50 00 01 1A FF FF F2 E4 FF FF FE
Ox0000002C: 00 OO OO O1 OO OO Q0O 02 OO0 00 OO0 03 00 OO0 OO 04 OO0 OO 00 O3 00 00
0x00000042: 00 04 00 OO0 OO0 O 0O OO0 OO 06 OO OO OO0 O4 OO OO OO0 O OO0 OO OO OB
Ox00000058: OO OO OO O OO OO OO OO OO OO OO OO OO0 OO0 OO QO OO OO OO OO 00 00
Ox0000006E: OO0 OO0 OO OO0 OO OO OO OO OO OO OO0 00 OO0 OO0 OO0 Q0O OO0 OO0 0O OO0 00 00
Ox00000084: 00 OO0 OO0 OO0 OO0 OO QO OO OO OO OO OO0 OO0 OO0 OO QO OO0 OO0 0O OO0 00 00
Ox000000948: 00 OO0 OO0 OO0 OO0 OO OO OO OO OO0 OO0 OO0 OO0 OO0 OO0 Q0O OO0 OO0 0O OO0 00 00 ‘:J
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PROBLEM SET 4

1. What is an assembler?

2. What is a cross-assembler?

3. What is a (CPU) simulator?

4, Does a simulator run as fast as the native or target processor being simulated? For example, does ARM processor
code being executed by a simulated ARM processor on a PC run faster or slower than the same code being run on a
real ARM processor?

5. What is the wrong with ADD x0,r16,r1?

6. Is there anything wrong with ADD r0, r0, r0?

7. Why is ADD rl, #5, r2 wrong?

8. What is the difference between a syntax error and a semantic error?

9. What is the difference between an instruction and an assembler directive?

10. What is the effect of ADR r0, 12347

11. ADR r0, #1234 is known as a pseudo instruction. What is a pseudo instruction and what is its purpose?

12. What’s wrong, if anything, with ADD rl5, r2, r3?

PROBLEM SET5

Here we provide an introduction to the Keil ARM processor development system.
1. Write a simple program to perform: Z=A+B+C - (D X E)

The instructions you may use are ADD, SUB, and MUL. Assume that the data is in registers r0 to r4 (representing A to
E) and the result is put in r5.

Enter your program into the Keil simulator and run it. You can use move instruction to load data into registers. Do you
get the expected answer?

2. Now assume A, B, C, D and E are 16-bit values in memory. You can load them by using a DCD directive. Remember
that you use a label to define the first memory location and you can put successive values on the same line by
separating them by commas. However, since each data item needs its own name, you are going to have to use one
directive per element; that is:,

A DCD 4
B DCD 12
C DCD -2
Enter the program, compile (build) it and test it.

3. Write a program that includes deliberate syntax errors. Enter it in the development system, assemble (build) it and
then debug it.

V5.0 “® 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part 29|Page



; [WORKBOOK FOR COMPUTER ORGANIZATION AND ARCHITECTURE: THEME AND VARIATIONS]

POINTER-BASED ADDRESSING MODES

We have already introduced addressing modes. Here we discuss the ARM processor’s register indirect
addressing mode that supports several variations. This is an important topic because it’s essential to the
efficient manipulation of data structures such as tables, arrays, matrixes, and vectors.

Let’s first review the basic concept of register indirect, or pointer-based, addressing. Indirect addressing specifies a pointer to
the actual operand which is invariably in a register. For example, the instruction, LDR x0, [r1], first reads the contents of
register rl to obtain the pointer that gives you the address of the actual operand in memory. It then reads the memory location
specified by the pointer in rl to get the required data. This addressing mode requires three memory accesses; the first is to read
the instruction to identify the register containing the pointer, the second is to read the contents of the register to get the pointer.

And the third is to get the desired operand at the location specified by the pointer.

You can easily see why this addressing mode is called indirect because the address register specifies the operand indirectly by
telling you where it is, rather than what it is. This is the only form of addressing that the ARM processor can use to access
memory. The box below describes three variations on this addressing mode and gives their assembly language forms, defines
the addressing mode (using RTL), and gives them names. The naming of addressing modes is not always consistent in

computer science and manufacturers sometimes use different names for the same addressing mode.

1. LIDR

2. LDR

3. LDR

4. LDR

ARM PROCESSOR POINTER-BASED ADDRESSING MODES

rl, [r0]

rl, [0, #4]

rl, [r0, #4]!

rl, [r0], #4

r0 points at the operand
[r1] « [[rO]]
Base register addressing

The operand is 4 bytes on from the location pointed at by r0
[r1] « [[r0 +4]]
Pre-indexed addressing

The operand is 4 bytes on from the location pointed at by r0. After loading
the operand, the pointer register is incremented by 4

[r1] « [[r0 + 4]]

[r0] « [rO0]+ 4

Pre-indexed addressing with writeback

Autoincrementing preindexed addressing

The operand is pointed at by r0. After making the access, r0 is updated by 4.
[r1] « [[rO]]

[r0] « [r0]+4

Post-indexed addressing
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The following figure describes the basic register indirect (sometimes called indexed or base addressing). The instruction
specifies an address register and that register points at the actual location of the data in memory.

Memory
r0 n-4 1
; i n ,| Destination
Pointer register > ™ register
r0]=n
[r0] n+4 LDR rl, [r0] copies the
contents of the memory
The pointer register location pointed at b
points to location n in register r0 into register r1
memory P
Memory
This diagram demonstrates the effect of 0 n-4
incrementing r0 by 4. Now, rO points at the next
word so that executing LDR rl, [r0] accesses a Pointer register n »
different location; that is, the same instruction has ~ n+4 Dostinal
a different outcome. [r0] = n+4 > re%sislt%?tlon
The pointer register )
points to location n+4 After accessing memory
In memory via a pointer in register
/-\/ r0, adding 4 to the
contents of rO means that

the pointer now points at
the next word in memory.

PLAYING WITH POINTERS

In principle, you don’t need any addressing mode other than the simple register indirect [r0]. In practice, computer design is
very much about the tradeoff between computational efficiency, complexity, and cost. Most computers provide variations on
the basic register indirect addressing mode in order to reduce the size of the code and speed up its execution. In the 1980s, this
was taken to extremes by the 68020 microprocessor that had truly complex addressing modes that could perform amazing
operations with a single instruction. However, such addressing modes were so complex that compilers could not handle them
optimally, and they took up a big chunk of the silicon chip. They were, at best, used infrequently. And they were slow.

Executing LDR rl1, [r0, #8]

Consider the operation LDR rl, [rO, #8]. Memory

This is only a slight modification of ARM’s plain
vanilla register indirect addressing. The
difference is the literal within the square
brackets. The address of the operand is found at
[rO] + 8; that is, the operand is 8 bytes on from n
the location pointer at by r0. This addressing

mode is sometimes called pre-indexed 8 n+4
addressing. / "

Pointer register r0 n-4

v

A\ 4

) n+8
. . . Th d loaded int L
The offset, in this case 8, is not added to the rl?;%"g;?g‘s fr%?n ?he'n © Destination

contents of the pointer in the register. The location pointed atby r0. —
contents of rO are fed to an adder, the offset
added, and the result used to access memory. The contents of register rO do not change.

A typical application of pre-indexed addressing is in accessing a table. Consider a table in memory containing 12 entries

corresponding to January to December. Register r0 points at the start of the table (i.e., January). The following operations have
the effect:
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LDR rl, [r0] ;Load r1 with the January data

LDR r2, [r0, #8] ;Load r2 with the March data

LDR r3, [r0,#28] ;Load r3 with the August data

STR r4,[r0,#44] ;Store the data in r4 in August’s location

Why are the offsets 12, 32, and 44? The wordlength of an ARM processor is 32 bits or 4 bytes. If rO points at January, the data
occupies locations [r0], [rO] + 4, [rO] + 8, [rO] + 12, etc. For example, February is the second month and its data is at [r0] + 4.

The offset for the first month is 0, and the offset of month i is (i - 1 * 4); e.g., May is month 5 and its offset is (5 - 1) * 4 = 16.

In practice, programmers rarely used literal numeric offsets. The EQU (equate) directive assembler directive allows you to
replace any number by a name; for example,

Hastings EQU 1066

This assembler directive causes the assembler to substitute 1066 for Hastings whenever it sees it. It doesn’t matter whether
you write ADR r0,Hastings or ADR r0, 1066, it has the same effect. The example below demonstrates how we can use
assembler directives with pre-indexed addressing to access an array of days, add two values together, and store the result. The
memory data shows that the final value (4 + 7 = 11 = 0x0B) has been correctly stored.

IEI E:\CengageBook\GengageWorkBook\ AssemblerDirectiveEQU.uvproj - pVisiond — |EI|5|
File Edit Wiew Project Flash Debug Peripherals Tools SVCS  Window  Help

=1 - ARy == @ L@ e o el[@ ]3]

FBo wron v IRBEA(D]3-8-2- 8- x- ||
|Registers 2 x| EQUtest.asm ] hila
Reqister | Value I; m AREL EQUtest, CODE, RELDONLY ZI
= Corrent 02 ENTRY
....... RO 00000004 03 Mon EQU a sMonday offset
------- R1 (00000018 04 Tue EQU 4 ; There we use Fri as the
"""" R2 (00000007 05 Wed EQU g ; i
....... R (00000008 & Thu EQU 12 i offset ratr_\er than the literal
------- R4 (00000000 07 Fri EQU 16 ; valuel6 (i.e., (5-1) x 4)
------- RS (00000000 08 Sar  EQU 20 ¢
------- RE (00000000 03 Sun  EQUD 24
"""" 7 (00000000 10
....... RE 00000000 11 RDER rl, Week Wesk
....... RY (00000000 £112 LDR r0, [rl, #Mon] d Mond s data
....... R10 00000000 13 LDR r2, [rl,#Fri] sget Friday's data
....... R11 00000000 Ca14 I ADD r3, 0,2 sadd thes values
------- B2 00000000 15 STR r3, [rl, #5un] sand put the result in Supnday's slot
------- R13(5P) (00000000 =216 Me B He sparking leop
------- R14 (LR} (00000000 | 17
) (00000014 18 AREA EQUtest, DATR, READWRITE
- CPSR E000000D3 19 Week DCD 4,6,2,5,7,9,7 rs=t up i
[*- 5PSR (00000000 20 ; these v 1€ 1 ed int
B Users/System 21 ; seven consectuive word locations The result
B Fast Intemupt 22 END i
3 Fa e 2 in memory
[+ Cianansienr = ht
ﬂ Project | = Registers Jil_l —'I—I
|Memor1r1 / ik X|

Address: [18 / N ii
0x00000018: )4 00 00 00 06 00 00 00 02 00 00 00 05 00 00 7 00 00 00 O 00 00 00 00

00 00 00 O 00 00 O
0x00000038: 00 00 00 00 00 00 OO0 00 00 OO0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 -
| ||Simu|atior| | y

Suppose we didn’t have pre-indexing. What would we do? We’d have to write something like:

MOV rl, r0 ;Save pointer r0 in rl.
ADD rl,rl, #4 ;Create a new temporary pointer in rl
LDR r2, [rl] ;Read the required data from memory

; LDR r2, [r0, #4] Does this in one instruction and doesn’t tie up a second register
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Simple pre-indexing is useful for accessing elements at a specified offset. However, it does not change the pointer. Sometimes,
we are stepping through a data structure and we need to permanently update the pointer each time it’s used; for example:

MOV r2,#64 ;Set up loop count for 64 elements

MOV  r3,#0 ;Clear the sum

ADR rO0,Table :Point to the table of data elements to be summed
Next LDR rl, [r0] ;Repeat: Read an element

ADD r0,r0,#4 ; Update the pointer

ADD r3,r3,rl ; Add a new element to the total

SUBS r2,r2,#1 ; Decrement loop counter

BNE Next ;Repeat until all done

There’s nothing new here. After accessing an element we update the pointer ready for the next cycle of iteration (in blue).
Fortunately, ARM processors provide a post-indexed addressing mode. The offset is provided after the pointer, as the example
demonstrates.

LDR rl1,[r0],#4

In this case, the operand is accessed at the address pointer at by r0, and then r0 is incremented by 4. This addressing mode
saves an instruction without incurring a time penalty. We can now write.

MOV r2,#64 ;Set up loop count for 64 elements

MOV r3,#0 ;Clear the sum

ADR r0,Table :Point to the table of data elements to be summed
Next LDR rl,[r0],#4 ;Repeat: Read an element and update the pointer

ADD r3,r3,rl ; Add a new element to the total

SUBS r2,r2,#1 ; Decrement loop counter

BNE Next ;Repeat until all done
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OVERVIEW OF THE ARM PROCESSOR’S INSTRUCTIONS

We now look at the type of operations ARM processors can carry out. In general, all computer instructions fall into a small
number of groups. The main groups are:

Data movement:  These are all the operations that move data from one place to another and often account for about 70% of all
the instructions in a program.

Data processing:  These are instructions that operate on data; that is, change its value. This group is often subdivided into
arithmetic operations, logical operations (also called Boolean or bitwise), and shift operations. The
following table describes there instructions.

Arithmetic [Arithmetic instructions perform operations on data in numeric form.

A logical operation treats data as a string of bits and performs a Boolean operation on these bits; for

example 11000111 AND 10101010 yields 10000010.

Shift Shift instructions move thg bits in a register one or more places left or right; for example shifting
00000111 one place left yields 00001110.

A bit instruction acts on an individual bit in a register, rather than the entire contents of a register. Bit
Bit instructions allow you to test a single bit in a word (for 1 or 0), to set a bit, to clear a bit to 0, or to flip
a bit into its complementary state.

Compare instructions compare two operands and set the processor’s status flags accordingly; for
example, a compare operation allows you to carry out the test (X < Y) or (x == vy).

Logical

Compare

Flow control: This group is concerned with modifying the sequence in which instructions are executed. There are three
main subgroups: the unconditional branch that forces a jump to a specific point in a program, the
conditional branch that forces a jump to a point in a program, if and only if a specified condition is met, and
the subroutine call and return. The terms branch and jump are used largely interchangeably in computing.

STATUS FLAGS

The processor status register records the outcome of an instruction and implements conditional
behavior by selecting one of two courses of action. Some processors call this register a condition code
register. Conditional behavior lets us implement high-level language operations such as

if (x == 4) then

or

A processor status register contains at least four bits, Z, N, C and V, whose values are set or cleared after an instruction has
been executed. These four flags (i.e., status bits) are:

Z-bit  Set if the result of the operation is zero

N-bit  Set if the result is negative in a two’s complement sense; that is the leftmost bit is zero.
C-bit  Set if the result yields a carry-out; that is, if the C-bit is 1.

V-bit  Set if the result is out-of-range in a two’s complement sense.

Typical CISC processors update these flags after each operation. Most RISC processors like the ARM require you to explicitly
update the condition codes. This makes sense because you can update the condition codes at one point in the program and test
them later as long as you haven’t performed a second update. ARM processors require you to append an S after an instruction
in order to force an update. Compare instruction do not need the S because, by definition, they update condition codes.
Consider the following example:
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ADD r0,rl,r2 ;addrltor2
SUB r0,r0,r3 ;subtractr3togetrl+r2-r3
SUBS r0,r0,#5 ;subtract5togetrl+r2-r3-5 and update condition codes.

Consider the following example using 8-bit arithmetic. Suppose r0 contains 00110101, and r1 contains 01100011,, the effect of
adding these two values together with ADD r1, r0, r1 would result in

00110101,
+01100011,
10011000,

The result is 10011000, which is deposited in rl1. If we interpret these numbers as twos complement values, we have added two
positive values to yield a negative result. Consequently, the V-bit is set to indicate arithmetic overflow. The result is not zero,
so the Z-bit is cleared. The carry out is 0. The most-significant bit is 1 and the N-bit is set. Consequently, after this operation
C=0,Z=0,N=1,V=1

DATA MOVEMENT INSTRUCTIONS

Although the most frequently executed computer operation is data movement, it is incorrectly named because the one thing it
does not do is to move data. Data movement instructions copy data; for example, the instruction MOV r1,r0O copies the
contents of r0 to r1, but does not modify the value of rl. You could say that a data movement instruction is a data propagate or
data copy instruction. You can also move a literal; for example, MOV r1,#12.

ARM processors have one highly unusual move instruction, the MVN, move negative, that takes the bits of one register, inverts
them, and then copies them to the destination register; that is,

MVN r0, rl has the effect [r0] < OXFFFFFFFF @ rl (performing an exclusive OR with 1 inverts a bit). This is not the two’s
complement of the register; it is the inverted bits of the register and differs from the two’s complement by 1.

Like other RISC processors, the ARM has special-purpose data load and store instruction that copy data to and from memory;
that is LDR and STR. We have encountered these instructions many times. CISC processors generally allow combined memory
access and data operations. For example, the 68K instruction ADD D2, address that adds the contents of memory location
address to register D2 and puts the sum in D2. This is a two-address instruction.

ARM processors do, in fact, implement a special swap memory with register (SWP) instruction that copies a memory location
to a register and a register to the memory location. This operation is atomic and cannot be split up or interrupted (i.e., both the

memory transfer to the register and from the register must take place without any interruption). You don’t have to worry about
this instruction because we will not be using it. It’s intended for signaling between distributed processes.

ARITHMETIC INSTRUCTIONS

Arithmetic operations are those that act on numeric data (i.e., sighed and unsigned integers).

ADD r2,r1,r0 Add [r2] € [r1] + [rO]
ADCr2,r1,r0 Add with carry [r2] € [r1] +[r0] + C
SUB r2,r1,r0 Subtract [r2] € [r1] - [rO]
SBSr2,r1,r0 Subtract with borrow [r2] ¢ [r1]-[rO]-C
RSB r2,r1,r0 Reverse subtract [r2] € [rO] - [r1]
RSCr2,r1,r0 Reverse subtract with carry [r2] € [r0] - [r1]-C
MUL r2,r1,r0 Multiply (unsigned) [r2] € [r1] x [rO]
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Add The ADD instruction adds the contents of two operands and deposits the result in the destination operand. One operand
may be in memory. All addition and subtraction instructions update the contents of the condition code register unless the
destination operand is an address register.

Add with Carry  The add with carry instruction, ADC, is almost the same as the ADD. The difference is that ADC adds the
contents of two registers together with the carry bit; that is ADC r2,r1,r0 performs [r2] <« [rl] + [r0] + C,
where C is the carry bit generated by a previous operation.

This instruction is used in extended arithmetic. Suppose you wish to add two 64-bit numbers using a 32-bit ARM processor.
Assume that the most-significant 32 bits of X are in r0 and the least-significant 32 bits in r1. The most-significant 32 bits of Y
are in r2 and the least-significant bits in r3. We can perform the 64-bit addition X + Y by

ADD x5,r3,rl ;Add the low-order 32 bits, update carry flag
ADC r4,r2,r0 ;Add the high-order 32 bits plus any carry

We use ADD to add the two low-order 32-bit words. An addition records and carry bit generated by the addition and moves it to
the C-bit. The ADC adds the high-order words together with any carry that was generated by adding the low-order words. The
figure below demonstrates Z = X + Y where X, Y and Z are 64-bit values and the addition is to be performed with 32-bit
arithmetic. Each of the operands is divided into an upper and a lower 32-bit word.

Most-significant word Least-significant word

The two lower words are
Xupper Xiower added to generate a sum
and a carry out.

Y Y, The two higher words are
+ el lower added together with any
<« carrP/ bit generated from adding
‘ the low-order words

Zupper Zlower

Subtract The subtract instruction subtracts the first source operand from the second source operand and puts the result in the
destination. SUB r2,r1,r0 performs [r2] « [rl] - [r0]. A subtract with borrow, SBC r2,r1, r0 performs

[r2] <« [rl] - [r0] - C (the carry bit is also subtracted from the result). This is entirely analogous to the
corresponding add with carry instruction and is used in the same way to perform extended arithmetic.

The ARM processor has a most unusual variant of the subtract instruction, RSB (reverse subtract) that performs a reverse
subtraction in which the operands are reversed; that is,

SBC r2,rl,r0performs [r2] « [r1] - [r0] (normal subtraction)
RSB r2,rl,r0performs [r2] « [r0] - [rl1] (reverse subtraction)

At first sight, this instruction seems pointless. After all, if you want to reverse the order of the operands, you can just write
them the other way round and write SUB r2,r1,r0 or SUB r2,r0,r1 as required. However, ARM instructions that

specify a literal operand are always of the form ADD rl,r2,#12 and the position of the literal cannot be changed.
Therefore, the reverse subtraction allows you to perform the operation, say, 123 - r0 by writing RSB 0, r0, #123.

Multiplication All members of the ARM processor family have a basic multiplication instruction, MUL, that multiplies two 32-
bit words together and keeps the 32-bit lower-order word of the 64-bit result. Its format is:
MUL rg, ry, rn Whichperforms [ry.51)] < [Tn(o:15] % [Tmo:1s)]

There are other multiplication instructions that are implemented by other members of the ARM family. We do not deal with
these variations.
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Members of the ARM processor family include an interesting and powerful instruction, the multiply and accumulate (ML2).
When you multiply two numbers, what do you do with the product? More often than not, you add it to a running total. This is a
fundamental operation in signal processing, image processing, and a range of other applications. For example, if A and B are
vectors, then their inner product is defined as s = Za;.b; fori=0ton - 1.

The operation MLA x4, r,, ry, r. IS defined as ry = ry + r, % ry,. This is unusual because it is a four-operand instruction.
Suppose we want to form the inner product of two four-component vectors, we can write:

MOV rO0, #4 ;Set up loop count for 4 components
MOV rl, #0 ;Clear the inner product
ADR r2,VecA ;r2 points to vector A
ADR r3,VecB ;r3 points to vector B
Next LDR r4,([r2],#4 ;Repeat: Read an element from vector A
LDR 5, [r3],#4 ; Read an element from vector B
MLA rl,r4,r5,rl ; Multiply a pair of components and add to the total
SUBS r0,r0,#1 ; Decrement loop counter
BNE Next ;Repeat until all done

This code is very similar to that we used before, except that we have two pointers, one to each of the vectors. As an exercise,
convert this into a program and run it on the Keil simulator. Provide your own data (by means of a DCD directive and debug the
program. Ensure that the result is correct by evaluating it yourself and comparing it with the result from the simulator.

Division Most members of the ARM family have very few division instructions. In fact, none at all. If you wish to perform
division you have to write a routine to perform the division using other operations. Fortunately, division is a surprisingly
infrequent operation.

COMPARE INSTRUCTIONS

High-level language provide conditional constructs of the form

if (x == vy) {a = Db * c};

We examine how these constructs are implemented later. At this stage we are interested in the comparison part of the above
construct, (x == vy), that tests two variables for equality. We can also test for greater than or less than. The operation that

performs the test is called comparison.

The ARM processor provides a compare instruction CMP r0,r1, that evaluates [rO] - [r1] and updates the bits of the
bits in the condition code register accordingly, Consider the examples,

ro rl Operation Processor status flags

10101010 10101010 CMP r0,rl z =1, c=1, N=0, V=20
10101010 00000000 CMP r0O,rl z=0,C=1, N=1, v=20
10101010 11000001 CMP r0O,rl z=0,C=0, N=1, V=20
10101010 01000001 CMP r0O,rl z =20, C 1, N=0, v=1
01101010 10101010 CMP r0,rl z=0,C=0,N=1, V=1

A compare instruction is inevitably followed by a branch instruction that chooses one of two courses of action depending only
on the outcome of the comparison. Here we demonstrate a compare followed by a branch.

Consider the high-level construct if (x == 5) {x = x + 10};
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We can write the following fragment of code.

ILDR «rl1, [r0] ;get X in rl (we assume that r0 is pointing at X in memory)
CMP «rl1,#5 ;is X == 57
BNE Exit ;1f not equal then go to ‘exit’
ADD rl,rl,#10 ;else add 10 to X
STR «rl,[x0] ;restore X to memory
Exit ;

In this example the branch instruction BNE Exit forces a branch (jump) to the line labeled by Exit if the outcome of the
compare operation yields not zero.

LOGICAL INSTRUCTIONS

Logical operations allow you to directly manipulate the individual bits of a word. When a logical operation is applied to two
32-bit values, the logical operation is applied (in parallel) to each of the 32 pairs of bits; for example, a logical AND between
words A and B would perform c¢; = a;-b; for all values of bit i.

Mnemonic Operation Definition Example

AND r2,rl,r0 Logical AND [r2] « [rl] [r0] 11110000 AND 10101010 = 10100000
ORR r2,rl,r0 Logical OR [r2] « [rl] + [z0] 11110000 OR 10101010 = 11111010
EOR r2,rl,r0 Exclusive OR [r2] « [rl] @ [x0] 11110000 EOR 10101010 = 01011010
NOT r2,rl Logical NOT [r2] [rl] 11110000 = 00001111
MVN r2,rl Move negated [r2] < [rl] 11110000 = 00001111
BIC r2,rl,r0 Logical AND NOT [r2] < [rl] [m 11110000 AND 10101010 = 01010000

The AND operation is dyadic and is applied to two source operands. Bit i of the source is ANDed with bit i of the destination
and the result is stored in bit i of the destination. If [r1] = 11001010,, the operation AND rl,#2 11110000 results in
[r1] = 11000000,. Remember that the symbol # indicates a literal or actual operand, and the prefix 2_ indicates a binary value.

The AND operation masks the bits of a word. If you AND bit x with bit y, the result is 0 if y = 0, and x if y = 1. A typical
application of the AND instruction is to strip the parity bit off an ASCIlI-encoded character. That is,

AND r2,rl,#2 01111111
clears bit 7 of rl to zero, and leaves bits 0 to 6 unchanged.

The OR operation is used to set one or more bits of a word to 1. ORing a bit with 0 has no effect, and ORing the bit with 1 sets
it. For example, if [r1] = 11001010,, the operation

ORR r2,rl,#2 11110000
results in [r2] = 11111010,.

The exclusive OR, EOR, operation is used to toggle (i.e., invert) one or more bits of a word. EORing a bit with 0 has no effect,
and EORing it with 1 inverts it. For example, if [r1] = 11001010,, the operation

EOR r2,rl,#2 11110000
results in [r1] = 00111010,.

By using the NOT, AND, OR, and EOR instructions, you can perform any logical operations on a word. Suppose you wish the
clear bits 0, 1, and 2, set bits 3, 4, and 5, and toggle bits 6 and 7 of the byte in r0. You could write:
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AND r2,rl,#2 11111000 ;Clearbits O, 1, and 2
ORR r2,rl,#2 00111000 ;Set bits 3, 4, and 5
EOR r2,rl,#2 11000000 ;Toggle bits 6 and 7

If [r1] initially contains 01010101, its final contents will be 10111000,. We will look at a more practical application of bit
manipulation after we have covered branch operations in a little more detail.

ARM processors lack a NOT instruction that takes the logical complement of a word. However, the MVN, move negated
instruction inverts the bits of the data being moved, so that MVN r1, r1 isthe same as NOT r1.

ARM processors have a bit clear instruction, BIC, that performs a combined AND with a negation. The effect of a BIC is to
AND the first operand with the negated second operand; that is, if the operands are A and B, then C = A-B. This instruction is
used as a mask to selectively clear bits; for example, the mask word 00001111, can be used to clear the four lower-order bits of
the source operand. Consider,

BIC r2,rl,#2 00001111 ;Ifrlcontains 00111010 the value of r2 is 00110000

SHIFT INSTRUCTIONS

A shift operation moves a group of bits one or more places left or right as the table below demonstrates.

Source After shift left | After shift right
00110011 01100110 00011001
11110011 11100110 01111001
10000001 00000010 01000000

Shift operations are used to multiply or divide by a power of 2, rearrange the bits of a word, and access bits in a specific
location of a word. Suppose 11001010, is shifted one place right. A logical shift right operation introduces a 0 into the leftmost
bit position vacated by the shift, and the new value is 01100101,.

Although there are only two shift directions, left and right, there are several variations on the basic shift operation, depending
on whether we are treating the value being shifted as an integer or a signed value, and whether we include the carry bit in the
shifting.

All microprocessors have a set of shift operations that move the bits of a word one or more places left or
right. However, the ARM processor is unique because it doesn’t have an explicit shift operation. Instead,
shift operations are incorporated in all data processing operations as an option. The second operand can
be shifted before it takes part in an operation.

THE FOUR CLASSES OF SHIFT INSTRUCTION

Arithmetic shifts treat the data shifted as a signed two's complement value. The sign-bit is propagated by an arithmetic shift
right. The number 11001010, = -54 is negative, and an ASR gives 11100101, (i.e., -27).

When a word is shifted right arithmetically, the old least-significant bit is copied into the carry flag bit. An arithmetic shift left
is equivalent to multiplication by 2, and an arithmetic shift right is equivalent to division by 2.

The number of bits to be shifted can be a constant defined in the program and the shift instruction always executes the same
number of shifts. Some computers let you specify the number of bits to be shifted as the contents of a register. This allows you
to implement dynamic shifts because you can change the contents of the register that specifies the number of shifts. The
following figure graphically illustrates the various forms of shift.
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- In a logical shift, a zero is

(a) Logical C |« Operand «—— |«——0  ghiteqin and the bit shifted

shift out is copied to the carry bit of
the condition code register.

LSR
00— Operand > » C
. . P In an arithmetic shift, the
(b) Arithmetic cIe Operand 0 number is either multiplied by 2

shift (ASL) or divided by 2 (ASR).
The sign of a two's
complement number is
preserved.

» MSB| Operand 1> » C

The bit shifted out is copied
| into the carry bit.

P In a rotate operation, the bit
(c) Rotate c I Operand N shifted out is copied into the bit
vacated at the other end (i.e.,
no bit is lost during a rotate).
The bit shifted out is also
copied into the carry bit

Operand

\ 4
v
v
(@]

Operand <—— J

7 N

Ed) Rotate |_ c

hrough carry

sl

A circular shift operation treats the data being shifted as a ring with the most-significant bit adjacent to the least-significant bit.
Circular shifts result in the most-significant bit being shifted into the least-significant bit position (left shift), or vice versa for a
right shift. No data is lost during a circular shift. Consider the following examples.

Operand

A 4
v
v

Shift type Before circular shift After circular shift
Rotate left, ROL 11001110 10011101
Rotate right, ROR 11001110 01100111

The last type of shift operation is called rotate through carry. The carry bit is treated as part of the word to be shifted. A
circular shift is performed with the old carry bit being shifted into the register, and the bit lost from the register being shifted
into the carry bit. Suppose that the carry bit is currently 1 and that the 8-bit value 11110000, is to be shifted one place right
through carry. The final result is 11111000, and the carry bit is 0.

The ARM processor’s shift options are:
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LSL #n  The operand is shifted left by 0 < n < 31 places. The vacated bits at the least-significant end of the operand are
filled with zeros.

LSR #n  The operand is shifted right by 1 < n < 32 places. The vacated bits at the most-significant end of the operand are
filled with zeros.

ASR #n  The operand is shifted right by 1 < n < 32 places. The vacated bits at the most-significant end of the operand are
filled with zeros if the original operand was positive, or with 1s if it was negative (i.e., the sign-bit is replicated).
This divides a number by 2 for each place shifted.

ROR #n  The operand is rotated right by 1 <n < 31 places. The bit shifted out of the least-significant end is copied into the
most-significant end of the operand. This shift preserves all bits.

RRX The operand is rotated right by one bit. The bit shifted out of the least-significant end of the operand is shifted into
the C-bit. The old value of the C-bit is copied into the most-significant end of the operand; that is, shifting takes
place over 33 bits (i.e., the operand plus the C-bit).

Note that there should be ten versions if all possibilities are included (2 directions x 5 modes). However, the missing operations
can be synthesized from the existing operations; for example, an arithmetic shift left is identical to a logical shift left, and a
rotate left can be achieved by rotating right (e.g., one shift left is the same as 31 shifts right).

If you want to perform a simple shift, you can apply it to a MOV instruction; for example,

MOV r2,rl, LSL #4 ; this will perform a 4-bit logical shift left
; on the contents of r1 and copy the result to r2.

Let’s look at another example. Consider the addition operation.

ADD r2,rl,r0, LSL #2 ; this will perform a 2-bit logical shift left on the contents
;of r0, add the result to r1, and put the sum in r2; that is
[r2] < [r1] + [r0] x 4

In this case, r0 is shifted left twice which is equivalent to multiplying by 4. Consequently, this forms the sum of r1 plus 4 r0.
Such an operation is often used in calculating the value of addresses in array accesses and pointer manipulation.
BRANCH INSTRUCTIONS

A branch instruction modifies the flow of control and causes the program to continue execution at the target address specified
by the branch. The simplest branch instruction is the unconditional branch instruction, B target, that always forces a jump

to the instruction at the target address. In the following fragment of code, the ‘B Here' instruction forces the ARM processor
to execute next the instruction on the line with the labeled by Here.

B Here ;jump to the line that begins ‘Here’

Here ADD rl,rl,r0

In the next example, execution continues sequentially from instruction 1 to instruction 8, which is B 2000 (branch to
instruction N at location 2000,¢). The address of the first instruction is 100055 and each instruction takes 4 bytes. Execution
then continues with the instruction at location N. Instruction N+ 5is B 1040 (branch to instruction 17 at location 104044.) and
a change of flow takes place again. Note that in reality, the ARM processor’s branch instruction does not use an absolute
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address but a relative address giving the distance to branch from the current instruction. We’ve used an absolute address here
for convenient. In practice, the programmer uses a symbolic name (the line to branch to) and the assembler works out the
appropriate relative offset.

1000 Instruction 1
1004 Instruction 2
1008 Instruction 3
100c Instruction 4
1010 Instruction 5

1014 Instruction 6 The branch instruction forces
1018 Instruction 7 the instruction at 2000 to be
101c B 2000 —Y executed next.
1020 | Instruction 9 2000 |Instruction N
1024 Instruct!on 10 2004 |Instruction N+1
1028 Instruct!on 11 2008 |Instruction N+2
102c | Instruction 12 _ 200c|Instruction N+3
1030 |Instruction 13 |  This block of code 2010 |Instruction N+4
1034 Inschqon 14 is not executed. 5 B 1040
1038 [Instruction 15
103c [Instruction 16

The branch B 1040 instruction

1040 Instruction 17 _
1044 Instruction 18 forces a jump to 1040.

We have already used a simple unconditional branch in ARM programs when we wrote Here B Here when we wanted to
force the computer into an infinite loop at the end of a program.

The most important feature of any computer is its ability to implement conditional behavior by carrying out a test and then
branching on the result of the text. The next example demonstrates the flow of control with a conditional branch.

Let’s look at this conditional behavior in high-level language. Consider the following example of the high-level construct
if (x == 3) then y = 4.

We can translate this construct into the following ARM processor code.

CMP rl,#3 ;(x == 3)°?
BNE exit ;if x is not 3 then leave
MOV r2,#4 ;if x is 3 then y = 4

exit

The instruction CMP r1, #3 compares the contents of register rl1 with the literal 3 by evaluating [r1] - 3 and setting the status
flags. If the result of the operation is zero, the Z-bit is set to 1. If the result is not zero (i.e., r1 does not contain 3), the Z-bit is
setto 0.

The key instruction is BNE exit, which means ‘branch on not zero to the instruction labeled exit’. The effect of this
instruction is to test the Z-bit of the status flags and then branch to the instruction with the label ‘exit’ if Z =0 (i.e., rl is not 3).
If rlis 3, Z =1, the branch is not taken and the MOV r2, #4 instruction is executed.

ARM processors provide 16 branch instructions of the form Bcc where the suffix cc defines the branch condition. Some of
these 16 conditions are described below.
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Mnemonic Condition Flags
BEQ equal Z=1
BNE not equal (not zero) Z=0
BCS/BHS carry set/higher or same c=1
BCC/BLO carry clear/lower C=0
BMI negative N=1
BPL positive or zero N=0
BVS overflow set V=1
BVC overflow clear V=0

CONDITIONAL BRANCH EXAMPLE

Let’s look at a simple application of conditional branching. You can implement a loop construct in the following way

MOV  rO0, #20 ;load the loop counter r0 with 20

Next . ;body of loop
SUBS 0, r0, #1 ;decrement loop counter and set status flags
BNE Next ;repeat until loop count = zero

Let’s look at another example of the use of branching. Suppose we have a number in r0 and we wish to set r1 to 1 if the number
is odd, set rl to 2 if the number is divisible by 4, and set r2 to 1 if it is greater than 200. This can be expressed as

rl = 0;

r2 = 0;

if (r0 > 200) then r2 =1

if (r0%2 == 1) then rl =1 //%2 is modulus 2
if (r0%4 == 0) then rl = 2 //%4 is modulus 4

We can translate this into ARM processor code as

MOV rl, #0 ;clear rl
MOV r2, #0 ;clear r2
CMP r0, #200 ;is r0 > 200
BLE Next ;if not then do next test
MOV r2,4#1 ;if it is, then set r2 to 1
Next MOVS r3,r0,ROR #1 ;dummy rotate right (and update status). R3 is a temp reg
BCC Nextl ;if carry clear then try next test
MOV rl, #1 ;if set, number odd, then set rl to 1
B Exit ;and leave this block
Nextl BICS r3,r0,#0xFFFFFFFC ;clear all bits except 2 least sig and update status
BNE Exit ;if not zero then exit
MOV rl, #2 ;if zero, number divisible by 4, then set rl to 2

Exit

As you can see, the code consists of tests and the actions or branches round actions. Note the way we test for divisibility by 4.
The effect of BICS r3,r0, #0xFFFFFFFC is to perform a logical AND between the contents of rO and the logical inverse
of the literal, which is 000...11. This operation masks r0 down to the two least-significant bits 000...bb. In order for the
number to be divisible by 4, bb must be 00. Therefore, if we test for zero and the result is zero, the number was divisible by 4.

Note that in the testing we end up with some dummy values. In these cases we use r3 as a dummy register.
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PREDICATED EXECUTION

The ARM processor is unusual in the sense that it provides a conditional (or predicated) execution mode that very few other
processors support. When an instruction is read from memory, the processor checks its associated condition. If the condition is
true, it is executed. If the condition is false, it is simply ignored and the next instruction in sequence dealt with. That is,
instruction execution can be squashed.

All ARM processor instructions are conditional. So far, we have ignored this because the default condition is always execute. If
you wish to attach an explicit condition, you simply add a condition suffix to the end of an instruction. Exactly the same
suffixes used by conditional branches; for example EQ. Consider the following example,

ADDEQ rO,rl,r2

This is a conditional version of the ADD. If the Z-bit (zero) is true, this instruction will be executed. Otherwise, it will be
ignored. Let’s look at the previous example again.

We can translate this into ARM processor code using conditional instructions.

MOV rl, #0 ; rl =0

MOV r2, 40 ; r2 =0

CMP r0, #200 ; if (r0O > 200) then r2 =1

MOVGE r2, #1 ;

MOVS r3,r0,ROR #1 ; 1f (r0%2 == 1) then rl =1 //%2 is mod 2

MOVCS rl, #1 ;

BICS r3,r0,#0xXFFFFFFFC ; if (r0%4 == 0) then rl = 2 //%4 is mod 4

MOVEQ rl, #2 ; 1f zero, number divisible by 4, then set rl to 2

Notice how much more compact the code it. All the branch instructions have gone. We perform a test and then a predicated
operation. There’s nothing to stop us doing multiple operations; for example,

CMP rl, #123 ; 1f rl == 123
ADDEQ x3,r3,#1 ; r3 =r3 +1
SUBEQ r4d,r4,#5 ; rd =r4d + 1

In this case, two operations are conditional and they are both predicated on outcome of the test on r1. We can also make tests
themselves predicated in order to test compound conditions; for example.

if (r0 > 200)&&(r2 == 4) then r2 =1
CMP r0, #200 ; 1if r0O > 200
CMPGT r3,r3, #4 ; if r3 =1r3 + 1
MOVEQ r2, #2 ; rd =r4d + 1

Here, we do a test (CMP r0, #200) and then a second test if the outcome is true. The third instruction is executed only if the
previous two tests were true.
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BRANCH AND LINK

The ARM processor includes a branch with link instruction that executes a branch and saves the return address. This allows
you to call a subroutine and then return to the calling point. The form of the instruction is BL. target, where BL is the op-
code and target the address of the point at which execution is to continue. The branch with link instruction stores the return
address in the link register r14. Consequently, programmers should not use r14 as a general-purpose register. If you use a
second BL instruction you will overwrite the previous address in the link register.

Consider the following example.

MOV rl, #4
MOV r2, 43
BL TestSub

TestSub ADD r3,rl,r2
MOV PC,1r

put parameter in rl

put second parameter in r2
call the subroutine

return here

very simple subroutine to do addition
same as MOV rl5,rl14 (forces jump back)
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THE MAXIMUM SEQUENCE COUNTER

For our next example we return to the problem of the sequence counter we introduced in Chapter 1 of Computer Organizatrion
and Architecture. Our problem is to take a sequence of digits, one by one, and determine the longest run in a sequence of digits
as the following figure demonstrated. The figure below is taken from the text and shows a string of digits where the longest
sequence is 4.

String of 17 digits

000000R OO DORORD

Run of four consecutive Run of three consecutive
digits with the same value digits with the same value

The pseudocode we developed to solve this problem is expressed as follows.

1. Read the first digit in the string and call it New_Digit
2. Set the Current Run Value to New Digit

3. Set the Current Run Length to 1

4. Set the Max Run to 1

5. REPEAT

6. Read the next digit in the sequence (i.e., read New Digit)
7. IF its value is the same as Current Run Value

8. THEN Current Run_ Length = Current Run Length + 1
9. ELSE {Current Run Length =1

10. Current Run Value = New Digit}

11. IF Current Run_Length > Max Run

12. THEN Max Run = Current Run_ Length

13. UNTIL The last d:iTgit is read
This code can be converted into ARM assembly language in the following way.

AREA RunLength, CODE,READWRITE ;find the longest run in a sequence

ADR r9, ;19 points to the sting
MOV r0, #1 ;10 is i (1 initially)
LDR rl, [r9] ;rlis New_Digit (initially the first element in the string
MOV r2,rl ;r2 is the Current_Run_Value
MOV r3,#1 ;13 is the Current_Run_Length (set to 1)
MOV rd, #1 ;14 is the Max_Run_Length (set to 1)
Repeat ADD r9,r9, #4 ; Repeat: point to next element
LDR rl, [r9] ; Read next digit
CMP r2,rl ; Compare New_Digit and Current_Digit
ADDEQ r3,r3,#1 ; IF same THEN Current_Length=Current_Length+1
MOVNE r3,#1 ; ELSE Current_Run_Length =1
MOVNE r2,rl ; Current_Run_Value = New_Digit
CMP r3,r4 ; IF Current_Run_Length > Max_Run
MOVPL r4,r3 ; THEN Max_Run = Current_Run_Length
ADD r0,r0, #1 ; increment digit counter
CMP r0, #18 ;
BNE Repeat ; until all digits tested
Park B Park ; parking loop
String DCD 2,2,2,2,2,3,6,6,8,6,4,2,2,3,2,2,2 ;the string
END
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The interesting part of this code is in red. Instead of using a conventional test and branch operation (e.g., CMP rl, r2
followed by BEQ abc) we make use of conditional or predicated execution. Consider the code fragment:

CMP r2,rl ; Compare New_Digit and Current_Digit

ADDEQ r3,r3,#1 ; IF same THEN Current_Length=Current_Length+1
MOVNE r3,#1 ; ELSE Current_Run_Length =1

MOVNE r2,rl ; Current_Run_Value = New_Digit

Initially, r2 is compared with r1 which sets the zero and negative flags. The ADDEQ instruction is executed if r1 and r2 were
equal. The next two instructions are predicated by NE (not equal or not zero). If rl is not equal to r2 then both these
instructions are executed. Both parts of the IF THEN ELSE clause are mutually exclusive and we do not need branch
instructions.

The following snapshot shows the execution of the code in the Keil simulator at the end of the program (note that this example
uses a different sequence of digits to the one in the figure above). Register r4 contains the length of the longest run which is 5.

W) 1€ engageBook |GangagriarkBiook \Maxiumt engthurvprg - pWivend - =10 %]
(Ehe Bt Wew, Duirit Bany Dyl | e - Tosle. SVCS cMOndew Mo R
W@ s ol [ -~ INABAIRTALID L Ele sa[@ds
- - o !
& BO BN »7,95‘;,..3._3.3.-._'3.’. % . |
iMegaters 1] MxRumt engts aem v x
i m— - 1
1| Plague | Vb RRYA Bunlengsh, COLE, READWAITE iongest ' gequence [—
Corverd ADR r9, String r? poicts $o the scing |
L Ded0000012
"1 DeE0000000 N o, 01 20 35 1 (2 In:rially
e DeD0000000 Low £, [r9) ri 1a Few Digit ivialle e Cirst -alamant
L] De0000001 o r2,r} r2 i# Ehe Currunt Bon Valow
R4 00000005 oy Y, 8 3 Lae Currs Le (32
RS Ov20000000 M 4,50 § 18 the Men Fum Len b |
ms DNDOD0000
7 DxH0000000 Sepesz ADO 5,79, 44 Sepait
R2 De2000000 Lon r1, [r9)
Ry DAC0N00AC oME r2, r1
R DeD0000000 ADOREQ . 3,03 3
R 20030000 WOVHE ¥3, 8.
Ri2 De20000008 WVEE 2,71 and R it
RI3GP) DN 0000000 o ra, 4 IF Current Run_Leagth > Mas fur
RM LA DeDO000003 MNVPL  rd,¥d TN Msx Fon = Cocrsnt Sum Zength
4 CPSH OeB0000003 ADD 0,70, ¢ o
s 5P5R Ov20000000 o 0,815
B User/Systam ENE Repeat u . »
# - Fadt hteeugt
¥ reengt 3 paze B Park parkics r
T Supervisor
- Svon |
# Undelred String DCE 2,2,2,2,2, S,6,6,5,6,4,2,2,5,2,2,2 Jche sTring |
S i o
Bl nnen !lnmm[ of |
CHmuRtan (L 000000000 Jec |
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THE STACK

The stack is a last-in-first-out (LIFO) data structure. It is a queue with only one end; that is, new items enter at the same point
as old items leave. Items leave a stack in the reverse order in which they arrive. A LIFO queue is the same as a stack in
conventional English. If you pile books on top of each other and then remove them from the top, it behaves exactly like a stack.

A stack can be used in many ways. However, we are interested in the following three applications of the stack:

1. Storing subroutine return addresses
2. Passing parameters from a program to a subroutine
3. Providing temporary storage (local workspace) in a subroutine.

The following diagram illustrates one possible stack structure (there are four variations that are determined by the way in
which the stack grows). The stack can be located in any region of memory. This stack grows up towards low addresses; that is,
the address of an item at the top of the stack is lower than the address of an item at the bottom of the stack.

Address register rl13 is used as the stack pointer by convention. It should not be used for any other purpose. When an item
enters the stack it is said to be pushed on the stack. When an item leaves the stack, it is said to be pulled off the stack.

Memory
‘_\/
Low memory
Direction of Top of stack |« Stack pointer
growth as items
are added
The stack
-

In this stack, the stack pointer points to the item at the top of the stack. This item is the last element pushed on the stack and
will be the first item pulled off the stack (hence the term LIFO or last-in first-out).

Suppose you have an item in register rO and wish to push it on the stack. Since the stack pointer points at the top of the stack,
the pointer must be moved up (i.e., decremented) before the item is moved to the location now pointed at. We can do this by

SUB rl3,r13,#4 ;decrement the stack pointer to move it up
STR r0, [r13] ;now put the item on the stack

Fortunately, you can combine these two operations together by using the ARM processor’s auto-decrementing addressing
mode

STR r0, [rl3,#-4]!

This instruction stores the contents of r0 at an address -4 bytes from r13; that is, 4 bytes above it. The contents of r13 are then
decremented by 4.

To pull (pop) a word off the stack, we perform the inverse operation; that is, we read the item currently at the top of the stack
pointed at by r13 and then increment r13 to point to the new item at the top of the stack. We can do this by:
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LDR r0,[rl3] ;read the item at the top of the stack
ADD rl3,rl13,#4 ;increment the stack pointer

Once again, you can combine these two operations together by using the ARM processor’s auto-incrementing addressing mode
LDR x0, [rl3], #4

The next figure shows the state of the stack after pushing r0 and then r1 on the stack by executing STR r0, [r13,#-4]'and
STR r0, [r13,#-4]". Note that we’ve used the sp synonym for r13.

Memory Memory Memory
—\/
ri3
ri3 -8 rl < Stack pointer
ri3 -4 r0 < Stack pointer 4

Top of stack |« Stack pointer 0 0

The stack pointer
points to the item

Stack pointer
] currently at the top . offset\?vith respect \__———_ J
of stack to the initial value

(a) Initial stack (b) Stack after (c) Stack after
STR r0, [sp, #-4]! STR rl, [sp, #-4]"!

The next step is to look at the subroutine and demonstrate how subroutines use the stack to handle return addresses, pass
parameters, and create space for local variables required by a subroutine during its life.

SUBROUTINE CALLS
A subroutine is a piece of code that is called, executed and a return is made to the calling point. Subroutines are very important

because they implement the function or procedure at the high-level language level. At this point, we are interested only in the
principle of the subroutine call and return.

Code

Subroutine o . . . . .
Call [y This figure demonstrates the subroutine call. Code is executed sequentially until a subroutine
/ call is encountered. The current place in the code sequence is saved and control is then
transferred to the subroutine; that is, the first instruction in the subroutine is executed and the
W processor continues executing instructions in the subroutine until a return instruction is
encountered. Then, control is transferred back to the point immediately after the subroutine

~ call by retrieving the saved return address.

Consider a simple subroutine called ABC that calculates the value of 2x* (where x is a 16-bit
value passed in r0). This subroutine is called by the instruction BL ABC (branch to
subroutine) that jumps and saves a copy of the return address in the link register, r14. A return back to the calling point is made
by copying the return address from the link register to the program counter, r15. Note that typical CISC processors like the
Intel 1A32 family automatically use the stack to store the return address and employ an RTS (return from subroutine)
instruction to return to the calling point.
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A typical ARM processor call and return routine is:

BL XYZ call XYZ
;return here

XY7Z :The subroutine

MOV pe,lr ;copy saved address to PC to return

Let’s create a simple example. Consider a subroutine that calculates the value of x* + 1, where x is in register r0 and the result
is returned in r0.

MOV r0, #4 ;set up a dummy parameter

BL SQR1 ;call SQR1

MOV r3,r2 ;do something with the result
Loop B Loop ;stay here

SOR1 MUL rl,r0,r0 ;Calculate X’ (note — can’t use source register as destination)
ADD r0,rl,#1 ;Addltogetx®+1
MOV pc,lr :Return

The following shapshots show the state of this program at the point the subroutine has been called. Note that r14 (the link
register) contains the return address 0x00000008 (this is the third instruction MOV £3, r2)

IEI E:\CengageBook\GengageWorkBook\ Example7.uvproj - pVisiond =1axl
File Edit View Project Flash Debug Peripherals Tools 5SVCS Window Help
BEFL IR L) s @e o4
RHEBO e v JRBEGE-O-F-®-0- - k-
Registers ax SubroutineEgl.asm ] Bl
Register WValue - m ARER SubroutineTest, CODE, READONLY j
=l Current 02 MOV r0,#4 sset up & dummy paramster

....... RO 00000004 03 BL SQR1 ;ocall 5CR1

....... R1 (00000000 04 MOV r3,r2 ;do something with the result

....... R2 (00000000 05 Loop B Loop ;stay here

"""" R3 (00000000 06

....... R4 (00000000 07 ISQR:L MOL rl,r0,r0 ;Calculate 2

....... =1 (00000000 08 ADD r0,rl,#1 ;Add 1 to get 2 + 1

....... RE (00000000 09 MOV pc,lr sReturn

------- R7 00000000 10 END

"""" R8 (00000000 n

"""" R3 (00000000

"""" R10 00000000 -

"""" R11 (00000000

"""" R12 x00000000

"""" R13 (SP) (00000000

""" (LR) (00000003

----- ) (PC) (00000010

B CPSR (00000003

B SPSR x00000000
- | Isar /Sustam M =
=] Project | & Registers NEIN k

[ |[simulé p

This subroutine mechanism has two flaws. First, because the multiply instruction can’t use the same register for
source and destination, we have to use rl to receive the result. This means that rl is used by the subroutine and any
data in it will be overwritten. Second, this subroutine can’t call another subroutine or be reused because the return
address is in r13, the link register, and another subroutine call would overwrite it.
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One way of solving these problems is to save the link register at the beginning of a subroutine and then restore it at
the end. Where should it be saved? The stack is the best place to save registers because the stack grows upward, and
all data is placed on top and not removed or overwritten as new data is added. We can also save other registers on

the stack. We can now rewrite the previous subroutine as:

SQR1 STR
STR
MUL
ADD
LDR
LDR
MOV

The detailed

AREA
ADR
MOV
MOV
MOV
BL
MOV
Loop B

SQR1 STR
STR
MUL
ADD
LDR
LDR
MOV

DCD

Base DCD
END

V5.0

1r ,[sp,#-4]! ;Save link register on the stack
rl,[sp,#-4]! ;Save register rl on the stack
rl,r0,r0 :Calculate x* (remember that we can’t use source register as destination with MUL)
r0,rl, #1 ;Add 1 to get x* + 1
rl [sp] #4 ;Restore register r1 from the stack
1r [sp] ,#4 ;Restore link register from the stack
pc,lr ;Return
code is as follows. Note the markers.
SubroutineTest, CODE, READWRITE ;make readwrite because we have the stack in this area
sp, Base ; point to the base of the stack
rl, #0xAB ; dummy value for rl1
1r, #0x11 ; dummy value for link register, r14
r0, #4 ; set up a dummy parameter in rOQ
SQOR1 ;call sor1
r3,r0 ; do something with the result which is in rO
Loop ; stay here
lr, [sp,#-4]"! ; Save link register on the stack
rl, [sp,#-4]! ; Save register rl on the stack
rl,r0,r0 ; Calculate x (note - can't use source register as destination)
r0, r0, #1 ;Add 1to get x> + 1
rl, [sp]l, #4 ; Restore register rl on the stack
1r, [sp], #4 ; Restore link register on the stack
pc, lr ; Return
0x89ABCDEF, 0,0,0,0x12345678 ;stack area
OxAAAAAAAA ; stack base and dummy data
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= RnE®END - . [@e c@a[EIN
. FEEEPE D L -

- x
ADR  #p,Sasw jpoins to the base of the steck -
E28¥D044 ADD R13, FC, $#0x00000044 .
MOV  xi,30x3B Jdumny value for rl
E3A010R8 MOV R1, $0x000000A8
MOV  1ir,$0x11 Jdumney value for link register, x=id
E3ROEQILI MOV R14, $0x00000011
MOV 30,88 jeet up a dummy persseter im0
E3R0D004 MOV RJ, $0x00000004
8L S0 seall QR
£B8000001  BL 0x0000001C
MOV  x3,r0 1do something with the result whidh is in x0
ZIA03000 WN R3, R0
locp B Locp jatay bere
WOx000J0018 EAFFFFFE B 0x00000038
10: 8QR1 5TR 1Ir, (ep,#-3]! i1Save link regiscer an the stack
[Ox0000001C EES2DECO4 STR Rl4, |[R23,8-0x0004]"
e STR ri,i=p.8-3)) :Savw register rl on the stack
Ox00000020 ES2D1I004 BIR RI, [R12,$-0x0004]!
- 43 MUL »1,20,20 ;Calcalate x"2 (can't use sourecs register az destinatian)
& HOx00000024 EO00I0090 MUL Ri, RO, RO
& 13t ADD rO,rD,$1 JAGd L to get x°Z + 1
) BOx00000028 E2200001 ADRD RO, RO, $0x00000001
& 14z L0R =i, ie=p). ¥4 iRmgtore register rl from the =sack
& [20x0000002C E495D1004 IDR R1, [R13],40x0004
& 15: LOR 1x, [#p), 84 sReators iinX register from =he atack
& MOxJ0000030 E4SDEOO4 LDR /14, [R1)), #0x0004
16: MOV  pc,ir :Return
HOx00000034 EIAOFOOE MWW P R4
MOx00000032 SSABCDEF SIMMIIB R11!, (RO-R3,RE-RE,R10-R11,R14-PFC)
JOx0000003C  O0OC000C ANDEQ RO, RO, RO % |
R R et R X e .":I
- X
SubroutineTeat, CODE, READWRITY /resdwrite lecsuss =he stack s in this arsa g
sp,Base /point tv the base of the stach
1, 80xA8 dusny walue for ri
ir, #0xi1 idusay velus for link reagister, ris
rd, 84 P 3 dumzy parspaszer in oo
SRRi 11 SRS
rd, r0 240 somethking with the result which is in 20
Loop istay Rere
Az, isp,8-41! ;Save link register oa bAw Ereck

1, (ap, #-4]!

egister rl on tke stack

ri, o, ro 3 Ate x*Z ({Can't uae souscs rejister ay destipation)
r0, rD, 31 TAde get x°2 + 1
1, (sp),. 80 JRmscare register r!l from the stack

Ir, (sp), ¢4 Restorye Jink yegister from the atack
PC, 1Y sReturn

OXSSABCOEY, T, 0,0,0x12245670 ratack atos
CRRAARRARAA 7stach bas= and dumsy data

et | = Regivtens I
Acdens [0 '
0x0000000G; £2 8F DO 44 E3 AD 30 AB £3 AD £0 13 23 A0 00 04 £5 00 00 01 £l A0 30 00 EA TP IF £0 04 £5 20 10 04 £O 03 00

FE ES 2D
0xD0000027: S0 E2 B0 00 01 E4 SD 10 04 E4 3D EO 04 EI AO FO OX ES AS CD EF ©0 OO 0D OD ©D OC OD OC QD Q0 OO0 00 12 3% 56 75 AR AA
Ox0000004E: AR AR 00 OD OO OC 00 OC 00 OC OC 40 00 00 02 G0 00 €0 00 00 00 00 00 0O 00 00 OC OO0 0D OC OC 00 00 Q0 0C Q0 00 00 00

oo O sack + Lray, {03

The next snapshot shows the situation at the point the subroutine SQR1 is called.
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T

- \ def uvpend - pVisiond
ISPt 5] (SRR XNEMNS .t @e ca[E]]
1B EO Belu s ORIERER-03-8-0-8- - | -
3 3 X || Desassemity . x
P &: ADR  sp,Saoe ;podns to the base of the steck -
= - Cusver 000000000 E28FD0O44 ADD R13, FC, $#0x00000042
an 00050004 3: MOV  xi,$0xiB ;dumny value for rl
A1 0000034 Ox00000004 E3A0I0AB MOV R1, $0x000000A8
2 0000000 L H MOV  1ir,$0x11 Jdumney value for link register, x=id
m S O000000% Cx2000000&8 E3ROEQIL MOV R14, $0x00000011
7l 0000200 H MOV 30,84 seet Up 8 dummy paraseter in 0
a5 0000000 x0000000C E3R0D004 MOV RJ, $0x00000004
56 00030300 6: 8L SQm:i seall 308
"7 BD0000007 0x00000010 EBGOOOOLI  BL 0x0000001C
& 0030000 ] MOV  x3,r0 1do something with the result whidh is in x0
85 0000 HOxQ0000034  EIR03000 WN R3, R0
R0 00000000 8: Locp B Locp jatay bere
EH
an 00000000
a2 00000300 Ox00000018 EAFFFFFE B 0x0000003 2
R13(5P) B000004C - 10: 8081 5TR 1z, lep,#-4]! i1Save link register oo the scack
ROx000000IC ES2DECO4 STR R14, [R23,4-0x0004])
11: SR ri,i=p.0-3)) :Savw register rl on the stack
- CPSR BON000203 Ox00000020 ES2DI004 BIR RI, [R123,$-0x0004]!
® SPSR 00000000 - 43 MUL 25,20,20 ;Calcolate x"2 (can't use source register ax destinartian)
4 l:bt"Sydw HOx00000024 EO00I0090 MUL Ri, RO, RO
- Fast intemapt 13t ADD rO,rD,$1 JAGd L to get x°Z + 1
3 ) MOx000Q00028 =E2200001 ADRD RO, RO, $0x00000001
;} Supervieer 14z LOR i, i=p), ¥4 iRmgtore register rl from the =sack
3 Aot S0x0000002C E495D1004 IDR R1, [R13],40x0004
}1 [T 15: LOR 1x, iep). 8¢ sReptors iinX register from =—he atack
2 el MOx00000030 E43DECO4 LDR /14, [R1)), #0x0004
16: oV pc,ir ;Retusn
C S0000001C
W l' s HOx0000003¢ EIAOFOOE WOV P R4
S 7 HOx00000032 SSABCDEF SIMMIIB R11!, (RO-R3,RE-RE,R10-R11,R14-PFC)
See 2 O ®0000003C OCOCODOC ANDEQ RO, RO, RO . I
AR et L o o f
) tamples.asm | yx
SubrouvineTest, CODE, READWRITE readwrite Decwuss the stack is in this area g
sp,Base point t5 the Dage of the stack
1, 80x28 dusay walue for rl
ir, #0xil idusay velue for link register, ris
rd, 84 780 up x dumzy parsp=ser in o
SuRi :call s
rd, r0 40 semetiing with the result which 19 in 20
Loop stay Rere
Ar, (39, 8-911 :Sewe link register on bhw steck
i, (sp,$-4]! ;Save register rl on the stack
ri, o, ro Ate x*Z (Can't uase souscs rejiscer ay destimation)
0, rD, 21 get x°2 + 1
rl, (sp), ¥ ister ri from the stachk
Ir, (sp), ¢4 Restorye Jink yegister from the atack
PC, 1Y sReturn
OXSSABCOEY, T, 0,0,0x12245670 ratack atos
CRIAISOIAA sstach bas= and dummy data —
Do | Ewga o
!g é 2 x
om0 [
0x0000000G; K2 SF DO 44 EI AD 10 A5 E3 AD E0 131 E£3 A0 00 04 23 00 00 01 EL A0 30 00 EA ¥F FF FE ES 2D 20 04 £5 20 10 04 £0 01 00
0xD0000027: 50 E2 B0 00 01 E4 SD 10 04 E4 3D EO 04 EI A0 FO OZ B3 AS CD EF 00 ©OC 0D 00 OD 00 OD OC 00 00 00 00 12 34 56 75 AR Ak
Ox0000004E: AA AR 00 OD 00 OC 00 OO 00 OC OC 40 00 00 00 G0 00 00 04 00 00 00 GO GO 00 00 OC 00 O OG 00 00 00 00 8¢ A0 00 00 00

oo O sack + Lray, {03

V5.0 B3|Page

“© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part



_ [WORKBOOK FOR COMPUTER ORGANIZATION AND ARCHITECTURE: THEME AND VARIATIONS]

IDSd@] s o] (*BRAN[ERTERS . r@e caEdAl
2-0i3-m-2-m- x- |

. x
EI8FDO44  ADD R1S, PC, $0x0000004% -
MOV i, S0xAB sdusmy value for ri
EZAQLORE MOV R1, $0x000000A2
MoV iz, 00x32 sduspey velus fo7 1ink segister, 234
EZACEQLL MOV R14, $0x00000011
MOV 20,34 jaec up A dJumwy paraxecer in =0
E3A00004 MOV RO, #0x00000004
BL 3QR1 1call SQRL
EBOOO0OL BL 0%0000001C
w3, o :do something with the result which i in £0
E1RQ3000 MOV R3,RO
§: locg B Losp jatay hares
9z
::? m Cx000000128 ERFFEFFE B Cx0000001E
an 00030000 10: 3QR1 STR ir, lep,4-3]! :3ave liznk registatr a8 the stack
xJ000001C ESZDEQOD4 SIR R14, [R13,$-0x0004) "
11: STIR =i,[sp,$-4]! :Save regiater rl an tha atack
SHEY e *00000020 E32D100¢ STR R1, [R13, 4-0x0004)
12: MUL 1%, r0,z0 jCalculace x"2 (cen't use sSource register as destination)
;g ggg m uOOl“)ODQJQ ECO10080 HZZ'L. R1,RQ, RO i .
45 L/ Syatem 3¥: ADD x0,x0,02 ;ASd L to get x°2 - 1
# - Fast Wtempt x00000028 EIB0000L ADD RO, RO, #0x00000001
&) 14: LDR »i,[ap).8e iResrore regiater rl fram the stack
4 Supervisor x9000002C E4501004 LDR R1, [R13], #0x0004
- Abot 151 LOR 1r,[sp3.#¢ IRestore :ink regiscer frcm the stack
B Ui %J0000030 E4IDENOM IDR Ri¢, [R213],#0x0004
2 - el 16: MV po,1r ;Return
P 0000834 0000034 ZIROFOOE MOV FC,R14
Wode P OxO0000038 SOABCDEF STNHIIE  R11!, (RO-RS,R5-R8,R10-R11,RI4-PCH
Stages 2 0x0000003C OQUQOD0OC ANDEQ 83,R0,R0
see T el | eSS oA |
s
4] Examples.asm | v X
=p, Base ipOint Co the base of the stack 3
rl, 30225 ydurmy value for ri
e, 80x33 dumny welue for link register, rié
ro, #4 Susay paransise ia 290
SoRl J
3, r0 7izh cthe rastlt wAlcA is 1a 00
Loop
Ir, jup,0-4]!
rl, [sp, #-41"
l,¢0, ¢0
O, r0, 41 g2 gt a~2
rl, (sp],$4 e register ri
ir, (ap). ¥4 JR=store link regis

poir Return

CxSOADCOEF,0,0,0,0x12345478 sscack area
CORARIARIR iatash Basw and 2umsy Jate

fm] Majert | -ml

Sodvens: [0

0x0000000G; K2 SF DO 44 EI AD 10 A5 E3 AD E0 131 E£3 A0 00 04 23 00 00 01 EL A0 30 00 EA ¥F FF FE ES 2D 20 04 £5 2D 10 04 £0 01 00
0xD0000027: S0 E2 80 00U 01 E4 SD 10 O4 E4 3D EQO Q4 EXI AO FO OZ ES AS CD EF ©0 OO 00D 00D ©D OC Q0 Q0 00 OC 00 A2 00 00 00 1% AR AR
Ox0000004E: AR AR 00 OD OO OC 00 OC 00 OC OC 40 00 00 02 G0 00 €0 00 00 00 00 00 0O 00 00 OC OO0 0D 00 00 GO0 00 Q0 00 €0 00 00 80

S0 saek + Luraly {0 vt |

The final screen shows the situation immediately before the return that is made by copying the link register to the PC.
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REL e [~ IPBANIEERNS i @e calE]4l
iFMo weo v o JRaEES-Cl3-e-0-8- x- |
v v "oty :'.:'K
ADE  =p, Base ;pesnt to toe base of the stack a
E20YD044 ADD R13, BC, #0x00000044
MOV ri,30xA3 jcummy value for rl
ESADIORE MOV Ri, $Ix000000AE
R2 MON ir,00x11 sduny waluw for link regimtes, 5id
R} EJAJEDII MOV R14, #0x00000011
™ MV 10,24 18ec up & paramecer CQ pass to S5QR1
Ry E3RQA0004 2OV RO, $0%x00000004
RE o: aL i soall SQR1
R? 0000000 Px00000010 IEB0J0GOI BL Ox0000001C
Ae BL00020%0 Tt MOV r3,x2 1do sceeching with the result
RS 300000000 F0x00000024 EIA03002 MOV B3, 02
R10 00000030 e: Loop s tocp sutay haze
Rit DD000C000 [L0x00000010 EAFFYEIE B 0%x00900018
a2 BA00%0 31 Q81 MUL ri,rd,x0 iCalculate x°*2 (note — can't Goe a0ouUroe reglater as destinstiom)
— ixJ00000IC EOO10080 MUL RI,R3, RO
Oe000000 10: TR iz, (e, 0-4)! sSeve link rmgister on the stack
“ 200000020 [EIZDECO4 STR R14, [R1Y, #-0x0004)*
11 SIR rl, fap,.8-41F }5aye register rl on the stack
: g m 000000024 ES2DI004 STR R1l, [R13,2-0%0004])
B Ueae/S 13: ADD 30.50,02 FAGE I to get X2 + 1
@ Fost itenupt x00000028 X2800002 ADD RO, RO, $0x30000001
&4 . in LORA Ir,(sp),$4 JRestore link register from the stack
- S . Ox0000002C E495DE004 L K14, [R13],$0x0004
B Abeat 14: LER i fep),. 08 sRestore zegistar 1 from the stack
B Undefned x00000030 E4501094 LIR R1, [R33], #0x0004
&5~ isnal i 15t MW pe,l= fRezurn
BC 8 (00000014 DON00000034  EIRCFOOE MOV PC, R
Node Superveer JOx00000038  EPASCLEF STMHILB B30, (RO-RS, AS-RE, RI0-RIL, R14-PC)
Sestee 2 OKOOOQW)C 00000000 ANDEQ R3,B0,R0
Sec 200200000 x0C000040 00000000 ANDEQ §D,RO,RO
SOx00000044 00000010 ANDEQ RO, RO, RO, LSL RO
H0x00000048 00000014  ANDEQ RO, RO, R4, 1AL RO
SOxGOD0D04C AARMMAAR DGE OXFERRAANC
e 2
1 subrouteetsdamm | v %
ANZA SubroucineTest, in chis ”:"g
ADR  #p, Base
MOV rl, $0x03 ¢
MOV 1r,$0xil sdumy valus for link regiaxter, rié
NN 10,84 158t Up 2 parapstar to pass to SGRI
BL SQR scall SgRd
HOV 13, r2 3 ng with tihe sepult
B Loap
MUL rl,¢0, 10
STR ir, [sp, 0-4)!
STR rl,[sp,$-4]!
ADD rO,r0, 21
DR 1ir, [ep], 84
LR 11, [ep]. 44
MOV po,lr
DCC  Ox55%RSCDEE,0,0,0,0x ixtack area
DI DXARARARAAN ;stack base and dumny date
{2144 »
Iy ml "
w .‘1.. x

e S [@=

FIx00000000; E2 BF DO 4% E3 A0 10 AN EJ AQ EO 11 Z3 AD 00 04 E8 00 00 21 E1L AD 30 02 XA FF Fr FE ED 01 00 90 ES 2D EO 04 ES 2D 10
0x00000027: D4 EZ 80 00 0% E4 SD ED ©O4 E¢ 9D 10 04 E1 A0 FO CE 85 AB CD EF 0D 00 00 GO0 00 OC 00 ©0 00 00 20 10 20 00 00 I4 AR AR
0x0000004E: AR AR 00 00 00 GO 00 OO0 00 00 00 00 OC 00 00 00 00 00 60 00 00 00 00 00 00 OO OO0 OC 00 00 00 300 GO OO0 00 00 00 00 00

Sl sha l‘:hn-n[
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MULTIPLE SUBROUTINE CALLS

We next extend the example by demonstrating a multiple call. Here, we’ve used a typical CISC instruction BSR ABC to
implement the call. A branch to subroutine instruction automatically saves the return address on the stack (unlike the ARM that
saves it in the link register). Because subroutine return addresses are stacked, you can call subroutines from within a subroutine
(nesting). In the following figure, the main body of the code calls subroutine ABC. At the end of the subroutine, a return
instruction makes a return to the point immediately following the call. In this example, the subroutine is called from two
different places and yet a return is made to the correct point in each case.

In order to achieve this objective with the ARM processor, we can use the ARM’s block move instructions that copy multiple
registers to and from the stack.

-
BSR ABC —] . Subroutine
N W
urn
from supr ABC
e
Return
BSR ABC —
outine L @ |
M Return from subr
e

USING BLOCK MOVE INSTRUCTIONS

In practice, programmers don’t use the simple code we’ve written above to save registers on the stack and to retrieve them.
Traditionally, RISC processors provide simple, regular instructions that take one cycle (in principle) to execute. The ARM
processor family is different because it has a set of instructions that perform multiple actions. These instructions are called
block move operations and are able to copy the contents of several registers to or from memory.

When you first encounter ARM’s block move instruction you are likely to be overwhelmed by their apparent complexity. In
fact, they are not complex; it’s just that there are several options to choose from. So, to keep things simple, we will just discuss
one option here. These two block move instructions we are going to use are:

STMFD ;Push a group of registers on the stack
LDMFD ;Pull a group of registers off the stack

Couldn’t be simpler. The STMFD mnemonic stands for store multiple registers full descending. The expression “full
descending” tells you two things. The term full means that the stack points at the top item on the stack. The term descending
tells you that the stack grows towards lower addresses as items are pushed. This is exactly the same type of stack we’ve already
described. When we wish to store data on the system stack, we have to use r13 which we can write as sp. We also have to write
sp! or r13! to tell the assembler that we want to use automatic indexing. Finally, we have to create a register list by enclosing
the registers to be moved between braces; that is, {r0,r1,r7} specifies registers r0, r1 and r7, We can use a dash to denote a
sequence of registers; for example {r0-r5,r8,r11} indicates the register list r0, r1, r2, r3, r4, r5, r8, and r11.

To push r0 and rl on the stack, we write STMFD sp!, {r0,r1}. Similarly, to pull rl and r2 off the stack, we write
LDMFD sp!, {r0,rl}

Suppose we use a different register list for the store and retrieve multiple register operations. What would happen if we execute
STMFD sp!, {r0,rl} then LDMFD sp!, {r5,r7}? Well, we push r0 and r1 and then we pull their values off the stack
and transfer them to registers r5 and r7, In other words, we’ve copied one group of registers into another group.
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Let’s demonstrate these block move instructions in action.

AREA BlockMove, CODE,READWRITE ;make readwrite because we have the stack in this area
ADR  sp,Base ; point to the base of the stack
MOV r0, #0xAB ; dummy value for rO
MOV rl, #0xCD ; dummy value for rl
MOV 1lr, #0xDE ; dummy value for link register, r14
BL SQR1 ;call Test
Loop B Loop ; stay here
Test STMFD sp!, {r0O,rl,1lr} ;save r0, r1, Ir on the stack
MOV r0, #0x11 ; let’'s do something pointless
MOV  rl, #0x22 ; let's do something pointless
MOV  rl4, #0x22 ; let’'s change the link register
ADD r3,r0,rl ;ladd rO and rl and put the result in r3

LDMFD sp!, {r0,rl,pc}

;pull rO, rl, Ir off the stack

DCD O0x89ABCDEF,0,0,0,0x12345678 ;stack area
Base DCD OxAAAAAAAA ; stack base and dummy data
END

This code is built on the previous example and uses the same basic format and stack structure. We use markers in memory like
0xAAAAAAAA and register values like 0OxAB so that we can see the data in memory when we come to debug the code. We’re
going to run this example and examine the state of the registers and memory at three points.

The next snapshot shows the situation immediately after the program has been loaded.

rAlCoreNDesttop|CengageBook GengaaeWorkBaok Examplel uverty - uWiiond
B Bt Mew Brofees Flash Debug Pagpreras Jools SWCS  Wndow  Hels

id@| saa . x| @@ el
EROolOeo v e aMAE. R0 5-8- 28] - A
Ragyutan 8 Cumw=bly a
lb‘:*!'l@', Ve ':: %] BlockMeve.asm 2415
= Cutrent — -~ - - . —
RO (G0000000 n RAREN BDlockMove,CO0E, REAINRITE . al
Al 0020000 07 AR 2 r X iy
R2 UeC0000000 03 MoV my o
o8] (0030000 04 Mov ¥
A4 Ce20%00 0% oV % !
RS Q0020020 s BL Test
RE Q00000000 07 Loop B 2
R7 (0000000 7
R8 0020000 e y
Ra OO0 18 Test STNFD sp!, (x0,r1,1rx} Jsave r0, rl, Ir on the stack
R10 0020000 10 woN £0,40x12 2 ! t I t .
AN Q20000000 = " o zl, $ix22 cdet'zs do something else paintless
R12 (G0000000 12 Mow £l4, #0x22
R13(59) 0000000 N3 ADD  £3,20,x1 Jadd { r1 and f
RI4LR) 00000000 Dra LONED 3p!, (20, x1,pc) spell 0, rl, Ir off the stack
RISPC)  (MO0000000 18
BOOOSR 00080000 IF DCD  OxSSABCIES, 0,0,0, 0x12385674 ; stack area A
4 sPsR 030020050 . =< i eohirt oYt Sl Al e i
¥ UsoySysem 17 Base DCD (XARMAAANR stack base i dinmy d
PR v v 16 END -l
=l B Reciters L. | ol
Marker for the

First data stored in
memory after the code.

’\(n-nr: |

base of the stack.

[ & M EIAXOEE IR e
00D 90 00 13 34 36

00 02

11 000000000 sac

Smawton
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The next snapshot shows the state immediately before the branch with link instruction.

\Exampied. uvpry - yVidion
ABTIPHS UVEFLY ~ UVIIONG

Togds

r0 and rl have been || Note that the stack FEeE e o alEEA
set up. pointer is pointing at
location 0x44, the base
of the stack.

BlockMove, CODE, REAINRITE
ap, Base
0, s$lxas
MoV xd, #0xCD
L= 1z, $0x36
EL Test
Loop B Loop

Test STNID sp!, [z, r1,1lx}
MOV 20, 40x1°
wuon zl, $ix22
MOV rl4, #0x22
ASD  £3,x0,x1
LOMED sp!, (x0,x1,pc)

0%39ABCIES, 0,0, 0, 0%12385614
OXAARISAAR

Here’s the initial
dummy value of the
link reqister.

A dG T3 A0 i3 T2 IO EE s odd C O3 K3 A0 24 11 I3 AD 10 22 TX AC RO
ao 2 a0 ¢C 00 co ©2 00 90 00 12 > ) Q0 00 CO DD S0 DD 0 QD
¢ 00 02 00 00 00 00 &2 00 92 .00 09 90 ¢ . 00 00 00 40 00 94 00 2 000
20000085 » P39 00 ©2 0G O0 90 00 09 3 00 ©2 00 O0 00 00 O¢ L PO 00 DO 20 0OD 92 00 39 00 20 ¢

Smagtion 11: 000CC0000 sac L6l

The next snapshot shows the state after we have called the subroutine and executed the first instruction.

e ESRIOp.En )¢
B Eat Yew Flash Debug  Pagpreras ook SVCS findow  Help
Sd@| L anla RS S S ) FEeE e oaEEA
ZRoloeo vl e @@ RS-0 28] -
| Rmgrrrans '- [
5] BlockMeove.asm
RO RAREN BlockMove,CODE, REAINRITE /= reac te because s Rave the stack
Al AR point t paze of the stack
R2 uon . .
A3 The stack pointer is now 0x38

e . x
A4 [r] OXT6 =y v lue_| because three 32-bit words
»

e g = 5 cxl_res have been pushed on the stack
:; : T [and 0x38 = 0x44 - 3 x 4.
e .

AN
g1

RIS OxO00000
RI4(LR) (0000016 t LOMED sp!, (x0,x1,pc)

£l4, #0x22
£3,20,x1

STMFD
R10 v oY
Mov
DD

DR Ox39ABCIEE,0,0,0,0x312385678
DCD OXAANUAAR sstack base and dunmy dats
END

Here’s the data written on the stack.
Starting at the highest address, the

link register (0x14), then r1 (0OxCD),
- and finally r0 (OxAB).
0O 3C T3 AC Q0 g o 4 EA Y

Co £r 00 ©2 Qa ) AR 34 AR AR 00 ©0 00 90 Q0 OO0 CO DD SO DD ©0 QD
o¢ 00 O2 00 ©5.00 D2 L 2] TT UU wv 00U Uv 00 D0 00 00 €0 00 90 00 &0 00 .50 00 00 40 00 94 00 90 00 &0
®2A000085 ¢ o2 00 ©% 00 ©9 06 00 9 <3 23 00 @200 O0 Q0 OO0 90 DO ©Q 0002 00 ©0 00 PO 00 DO 20 DD 2 00 ¥4 0N 20 ¢

Smagtion
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The next snapshot shows the state immediately before we execute the last subroutine instruction and return.

EXER IS e

Register r3 now b _Rletl RIPSs
contains r0 + rl. -

FEe@ e caEHA

.

AREA BlockMove,COOE, READNRITE , make readvrite because we Have the stack in this aree ol
ADR  sp,Base pds @ Of the stack —
MOV x0, tlxiE
MOV xd, #0xCD
BL Test

Loop B Loop

Here’s the initial
dummy value of the
link reqister.

Test STNFD sp!, (x0,rx1,1x}
o £0, #0x12
MOV xl, $ix2
bow £l4, #0x22
ADD  £3,x0,x1
LONFD 3p!, (x0,x1,pc)

spull 0, 1, Ir

DCR  Ox39ABCIEE, 0,0,0,0%312345%678
CD  OXAANIAAA

Ck aArsa —
ack base and dunmy dats

230000003: K3 7 0O 3C T3 AS 00 &B 3 A0 33 CD 3 A £ OF £B 00 00 04

EATT T TR 32 %0 85 30 o1 KR
C00220: B9 AS CD Z¥ 00 02 00 D9 ¢ 50 &8 © = G 53 00 D3 34 AR 2A AR 3R

00 0 0

00 %0

o

0 30 00 30 0D oC OO
® 00 00 00 00 00 00
2 00 0D 0Q 0D %4 0D

ES D40 23 TI A0 2G 11 I3 A0 2221 A0
00 ©3 00 90 00 00 GO DD S0 DD ©0 QD 90 Q0 O
00 &5 00 .00 00 00 S0 00 4 00 S0 00 &0 00 ¥
00 ©0 00 PO 00 DO 20 0D 22 00 &4 00 20 00

1200000621 00 O 00 ©2 00 ©0.00 DO 00 DO 00 .00 &2 00 0 00 00 00 DO ©
®2A0000%5: D0 90 00 % 00 ©2 GG O0 40 00 00 00 29 00 ©2 00 OO 00 00 00

£340

The final final shows the state after we have executed the last instruction in the subroutine and have returned to the calling
program.

ﬁwhmmmmmmsmw
| Dod@| - ania BN S e ) FEeRE e ©alEEA
axlg oloEn e @@ R-OR5- 8- 3-8 -]
ll Civmrw=hiy
2 5] BlockMeove.asm
BlockMove,CODE, READNRITE /make readw e because s Kave the stack in thir as
#p, Base spoint te base of ¢ tack
x0, $0xan > dunmy lf:’ o=
1, #0xC0 o 3
1z, 40x76
Test

Laop

sp!, (x0,x1,1x}

£0, 40x12

z1, $ilx2

£l4, #0x22

£3,20,x1
LOMEFD sp!, (z0,x1,pc)

DCD  OxSSABCIES, 0, 0,0, 0x1234%678 ;5ta
Co  OxXAANUAAR - k base and dummy d
END

0O 3C T3 A0 00 A3 T3 A0 CAEAITITIME DI IIDIN
Co Zr 00 ©2 Q0 DD 9% #3 % o 2 00 ¢ 3 Q0 00 ¢a DD S0 DD
0 02 00 ©5.00 D2 00 DO 04 00 . O 00 04 00 €0 00 00 00 ) 90 00 <a 00 99 00
00 ©3 00 O2 G O3 QAG 00 90 NO 2 v 90 DO ©2 00 02 00 0 00 90 D0 20 0D 22 00

Smagtcn

Ce0 e
§88%s
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PASSING A PARAMETER TO A SUBROUTINE

When you call a subroutine, you often have to pass parameters to the subroutine. In a high-level language you might call
subroutine XYZ with parameters P and Q by XYz (P, Q). In a low-level language, you can push the parameters on the stack
immediately before calling the subroutine. Of course, you don’t have to pass parameters via the stack; for example, if there are
a very few, you can transfer them via registers.

Consider the following example where we have a very simple subroutine that adds two numbers P and Q and returns their
result S = P + Q. Using pseudocode, we can write the following sequence of actions that describes the passing of the two
parameters and the receiving of the result.

Push P

Push Q

Call ADD

Pull S

Adjust the stack

We push the two parameters on the stack and call the subroutine. The subroutine reads the two parameters off the top of the
stack, and replaces one by the result. Note that we have to adjust the stack to take account of the fact that we have pushed two
parameters but pulled only one. The stack must always be balanced with equal numbers of push and pull operations.

The next diagram shows the effect of pushing a parameter on the stack before calling a subroutine. State (a) demonstrates the
situation immediately before the subroutine is called. State (b) shows the situation in which both parameters have been pushed.
State (c) shows the situation in which a subroutine has been called and the return address is saved on the stack (typical of CISC
processors).

Memory Memory Memory
SP
sp -12| Return address |« Stack pointer
-8| Parameter Q Stack pointer|  -g8| Parameter Q (4
sSp -4| Parameter P -4| ParameterP |8
Top of stack [« Stack pointer 0 0
- _ -

(b) Stack after pushing P and Q © Stack after pushing the

(a) Initial stack
return address

The next figure demonstrates the behavior of the stack during the subroutine execution.

Memory Memory Memory Memory
SP
-12| Return address <—|Stack pointer SP
-8| Result S=P+Q |4 -8| Result S=P+Q <—|Stack pointer sp
-4| ParameterP |8 -4| Parameter P 4 Parameter P <—|Stack pointer sp
o o o Top of stack <—|Stack pointer

(d) Stack after adjusting the

(b) Stack after returning from
i stack pointer

(a) Stack after the subroutine
subroutine

reads Q and P and stores the
sum.

(c) Stack after pulling the
result
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As you can see, the stack grows as parameters are pushed and the subroutine called. Then the stack declines as a return made
and the two items on the stack removed. Now, let’s look at this process in detail using an ARM processor.

USING THE STACK - AN ARM ExXaMPLE

The following code sets up an environment and carries out the actions we have described.

AREA
ADR
MOV
MOV
STR
STR
BL

LDR
ADD

Loop B

ADDR STR
LDR
LDR
ADD
STR
LDR

DCD
Base DCD
END

ParamTest, CODE, READWRITE

sp, Base

r0, #0xAB

rl, #0xCD

r0, [sp,#-4]1!
rl, [sp,#-4]!
ADDR

r2, [spl, #4
sp, sp, #4
Loop

1r, [sp,#-4]1!
r5, [sp, #8]
r6, [sp, #4]
r5,r5,r6

r5, [sp, #4]
pc, [spl, #4

0,0,0,0,0
O0xAAAAAAAA

; make readwrite because of the stack
; point to the base of the stack

; dummy value for P in rO

; dummy value for Qinrl

;push P

;push Q

; call the adder

; pull S off the stack

; adjust the stack pointer

; park here

; push the link register on the stack

; get P (buried under the return address and Q)

; get q (buried under the return address)

; do the addition

; save result on the stack under return address (overwrite Q)
; pull return address off the stack

; stack area
; stack base and dummy data as marker

The following snapshot demonstrates the situation when the program has been loaded.
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Wt \Cengaoetook | GengageWorkBook \Parsm T estavproj - pVisiond

Sie Edit View Projet Figh  Debuy

Pegipherals. Tooly SVCS  Window Help

ddd . 0 LB e cal@lil
& B0 aon v e ooaEEaEls-e-0- 8 x- |
| Registers : X 4] PaamTestiasm | v x
FRagnier | Vabo 2l o AREM FaranTesti,CODE, READNRITE  make ack 3
= Current =l
A0 00000000 el
Al 00000000 o xCD
A2 00000000 05 STR 0, {sp,$-4]!
L] Q0000000 06 STB v, {sp,$-4]!
e 00000000 o BL ADDR
RS DR0000000 .08 LDR  r2, Ispl, &4
g 0020000 9 ADD  sp,sp,#4
"7 DD0000002 10 Locp B Lacp
A8 0020000 1
RS 00000000 12 ADDE STR ir, [8p, 8-4]!
a0 0000000 13 LDR 3, [sp, #5]
an 00000000 " DR 6, (sp,$4]
/12 Q00000000 15 ADD ra,Th, 76
R3Sy odoooose - ||| 6 STR  rd, [sp, #4]
LR 00000000 17 L8 pe, Ispl, #4
RI5P0) 00020000 18
S CRSA Q0030003 19 DL 0,9,0,0,0
B SPSA DCO0R0000 20 Sases DCT  OXARARAAAA
B1 Uner/Symeen 21 ENC
# - Fast Interugpt vl
Memory 1
H\tul-lo
Dx00000000: E2 8Y DO 48 X3 A0 OC AS E3 RO 10 CD ES 2D 00 04 E5 2D 10 04 28 00 00 D2 ES 8D 20 04 E2 BD DC 04 Z Y FF FY
: £5 2D EO 04 X5 3D 80 08 88 50 06 X5 8D 30 D4 ¥4 9D YO 02 00 00 00 00 00 OO 0O 00 00 00 DO 0O
:]oo o0 Do 00 00 00 00 0O 00 00 00 00 00 00 £O 00 00 00 00 0O 00 040 00 00 OO OO 00 00 00 00 0D
00 _0p [ 0 20 0 Q 00 00 00 00 049 ¢ Qs 0
o Call Stack 123 1

1111:0.00000000

This is a line of data in memory starting at address 0x00000048.

This is the marker for the base of the stack which will grow up
towards lower addresses. That is, the first free address on the
stack is 0x00004C.

The first five lines set up the stack pointer, put some data (the parameters P and Q) into registers r0 and r1 and then push the
parameters on the stack using pre-indexing with auto decrementing; that is, the stack pointer is moved up by one word (4 bytes)

and then the data stored at that location.

ADR sp, Base

MOV r0, #0xAB

MOV rl, #0xCD

STR r0, [sp,#-4]1"!
STR rl, [sp,#-4]1!
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; dummy value for P in rO

; dummy value for Q in rl

; push P

;push Q
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The following snapshot demonstrates the situation before calling the subroutine (i.e., we are about to execute the branch with
link instruction).

Wt \Cenguoetook | LengageWorkBook \Parsm | estavpro) - pVisiond P [ )
| 1S Hd@ + i RN BRSNS Al o Hal -~
Lo aeo v e DaaERa[O0]3-e-0- 8- «-

e s x 4] ParamTestiasm | v x
Rageter Vb - ] RREA FarenTestl, CODE, READNRITE 3
= Current 2 AD8  sp,Base

MOV r0,40xAE
('] MOV ri,$0xCD

R Q0000000 STR rQ, {sp,$-4]!

A Q00000000 06 STB rl,{sp,$-4]!

As Q00000000 o7 BL ALTR

RS Q0000000 08 LDR r2, [spl, &4

219 20000000 9 ADD sp,sp, #4

A7 0000002 10 Locp B Lacgp

RS OeG000000 "

RS 00000000 12 ADDR STR ir, [sp,8-4]!

a0 00000000 ‘13 LDR  e5, [ap, 5]

an Q00000000 4l DA 6, [sp,#4]

R12 Q00000000 215 ADD 3, 5,76

16 STH rd, [sp, 4] 4 oLhe 2tack under return addrssa
A4 LA) 00000000 17 D8 pa, Isp), #4 speil return addyess, vorkisng registers off stach
18
8- CRSA Q20020003 19 DCC stack a
& SPSH CO000000 20 Bass DCC !stack bass and dummy data as marier
B User/Sysen 21 END
# Fast nteeupt !
Eroject | B Ragieers | sl |
Memary 1
-MID
Dx00000000: £2 8 DO 48 £3 A0 00 AN E3 A0 10 €D ES 2D 00 04 3 2D 10 C4 28 00 00 02 E4 5D 20 04 E2 8D DC 04 XA rY
Ox00000024: £S5 2D EO 04 X5 3D 80 08 £5 9D €0 04 EO 85 50 06 ¥5 8D 50 D4 E4 9D YO 02 00 00 00 00 00 0O OO 00 00 00 0O OO
0:00000345:[ AR AR AN 00 00 00 90 00 0O OO0 £O 00 Q0 00 00 OO 00 00 00 00 DO OO 00 00 00 0O OO
10X0000006C: 00 00 QP 00 00 00 00 00 20 00 .00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 Q0 00 00 :lu
;}r_,n Stk |:mil
| Simulation |it1:0.00000000
These are the two

parameters pushed
on the stack
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The snapshot of the system below shows situation in the subroutine after reading the two parameters and pushing the return
address. We have called a subroutine and loaded r14, the link register, with the return address, and then executed the following
code:

ADDR STR lr, [sp, #-4]! ; push the link register on the stack
LDR r5, [sp, #8] ; get P (buried under the return address and Q)
LDR r6, [sp, #4] ; get Q (buried under the return address)

This code first pushes the link register on the stack and then reads the two parameters off the stack. You will see that registers
r5 and r6 contain the same parameters are r0 and r1, and that the contents of the link register are now the topmost element on
the stack.

W\ Cenguoetiook | GengageorkBook \Parm f estavpro) - pVisiend =0 x|
Bie EdN View Diojed Fh Debug Perphenas Jooh VG5 Window Hel _ -
FTT 10T *eiin @ O @ caEi

g U0 arn v e naaEEaEls-e-0- 8- x- |

[Regiters B X 4] PaamTestiasm | v X
FRagrier | 1= AREA FaranTesti,CODE, READNRITE  make re ack -;-]
= Cumrent AD3

RO O00000AE MOV

m Q000000CD MoV v

R 00000000 STR v, {sp,$-4]!

R Q00000000 STB v, (sp,#-4]!

Aa 00000000 BL AR

RS O00000AB LDR r2, [spl, &4

fre ——acoooeco | ADD  =p, oD, 44

A7 Dd0000002 Loocp B Lacp

A3 OeG000000

RS 00000000 ADDE STR ir, [&p,8-9]!

"0 00000000 LDR rh, [ap, $5]

an Q00000000 won ré, (sp, ¥4}

A2 Q00000000 ADD 3, 5,76

RII(SPE 00000044 STR 9, [sp, #4]

14 LH) 00000012 Low pa, Ispl, #4

S - CRSA SB0020003 DCT 1,90,0,0,0 sstack area
B SP5A 0000000 Base DCT  OxARARAAAA stack bases and dummy data as marker

Bl Uner/Sysen BN
B Fast Iteeupt -l o
B vojea Iw.nl |c| | '|

| Memory 1 a x|

S =|
podees [0 E]:l

Dx00000000: 22 0¥ DO 48 ¥3 A0 00 AN E3 RO 10 CD ES 2D 00 04 £35 2D 10 C4 28 00 00 D2 E4 8D 20 04 £2 8D DC 0§ LA FY #F ¥Y
Ox0D0000024: £S5 2D EO 04 X5 9D 80 08 E£5 9D €0 04 EO 85 50 06 E5 8D 50 D4 ¥4 9D YO 04 00 00 00 00 00 OO 0O 00

1000000048 0 0 cD 00 00 AB AR AR AA AA 00 00 00 00 00 0O 00 £O 00 00 00 00 OO 00D 00 00 00 DO OO0 0O
0 $06C: 00 00 0O 00 00 00 O 0 0 ¢ ) 00 0 0 00 0 Q¢ 0 O Q0

:Jueml

The link register,
r14, saved on the
stack
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The next snapshot shows the situation immediately before the return from subroutine. We have just executed

ADD
STR

r5,r5,r6
r5, [sp, #4]

;do the addition

These instructions perform the addition of the parameters in registers r5 and r6 and then store the result at [sp] + 4 which is one

;save result on the stack under return address

word below the top of the stack; that is, the location of parameter Q. The following memory map shows that Q (in memory)

has changed from 0x000000CD to 0x00000178.

‘_v__‘v- \Cengagetiook | GengageWorkBook \Param T estavpro) - pVisiood ‘szl
fie Edit View Projet Figh  Debug Peripherals Tools $VCS  Window Help ; _ .
1GW@ sl » * XIS Ge@e calFdy
g uo o e nRaERa[TII-0- 3-8 - |
Begwten 02X 1) raamTedtiam | X
Raguier | E AREA FaranTesti,CODE, READNRITE  smake read ack 3
= Current ADR sp,Base
MOV 0, $0xAE
MOV ri, $0xCD
A2 Q00000000 STR rd, {sp,$-4]!
R3 Q00000000 STB v, (sp,#-4]!
A4 Q00000000 BL ADDR
LDR r2, Ispl, 4
ADD sp,sp, #4
"7 00000002 B Lacp
RS 0000000
RS 00000000 STR dr, [8p, 847!
LAl 00000000 LD rh, [ap, $5] a Q)
AN Q00000000 DR ré, (sp, ¥4}
R12 SO0000000 ADD 3, T5,76
STR rd, [sp, $4] saave result . stack Under return sddress
LDH pao, Isp), #4 spRil return addyess, vorkisg megisters SIF stech
B - CRSA B0000003 DCC 1,0,0,0,0 stack area
B - SPSA DO0000000 DCT  OXARAARAAAA stack base and dummy data as narier
1 Unee/Symen EXC
1 Fast Inteenpt -l >
E mvojet Innomnl v J
| Memory 1 3 x|
S|
Fodmen |0 E]
Dx00000000: E2 8Y DO 48 X3 A0 00 AN E£3 A2 10 €D ES 2D 00 04 E3 2D 10 04 23 00 00 02 E4 5D 20 04 E2 8D DC 04 Zh 2T PP FY -
0x00000024: £ ) £S5 9D 80 08 £S5 9D 60 04 EO 88 50 06 X5 8D 350 D4 E4 9D Y0 04 00 00 00 00 00 OO 0O 00 UC o
10x00000048: 00 00 AB AA 0 )0 00 00 0 00 00 00 00 0 0o 00
{0X00000065: 00 0 00 00 0 00 00 00 0 2

o Call Stack | JMI

V5.0

Parameter Q has
been overwritten
the result.

by
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The final snapshot shows the situation at the end of the program when we have executed the following code.

LDR  pec, [spl,#4 ; pull return address off the stack (last line of subroutine)
LDR  r2, [sp]l,#4 ; pull S off the stack (first operation after the subroutine)
ADD sp, sp, #4 ; adjust the stack pointer

Loop B Loop ; park here

Note that this code is rewritten in execution order rather than program order; that is, the first line is the last operation in the
subroutine and the second line is the first instruction at the return point.

A return is made by pulling the link register off the stack and putting it in the program counter. In the calling routine, the top of
the stack is pulled (i.e., the result) and put in r2. Finally, the stack pointer is incremented by 4 to restore it to its original value.

Wt \Cengaoetook | GengageWorkBook | Parsm T est avproj - Wisknd =0 x)
fie Edn View Projet Figh  Debug Peripherals Tooly SVCS Window Help » _ ,
SH@ L asl > X X0 U ‘Gle@e caTdA
g Lo aen v e obaEEa-Els-e-0- 8. x- |
| Registers 2 x 4] PaamTestiaam | v X
Ragster | l:‘: o RRER Farenlesti, CODE,READNRITE :make rea ack j
= Current (erd AD3 sp,Base
RO O CO0000AE MoV 0, $0xAE
(] M ri, $0xCD
05 STH rQd, {sp,$-4]!
05 STB rl, {sp,$-4]!
07 BL ADDR
08 LDR r2, Ispl, 4
09 ADD  sp,sp,#4
10 Loop B Locp
1
12 ADDE STR ir, [8p, 841!
13 Lon rh, [ap, 25] d Q)
" DA ré, [sp,$4)
5 ADD rd, o, ré6 o t! ion
1 STR ¥, [sp, $4] saave result on the stack Under return sddrssa
17 LDH  po, Ispl,#4 speil return addyess, vorkisg regiaters off steach
18
19 DCC 0,9,0,0,0 ystack area
20 Sass DT OXARARAAAA sStack bass and dummy data as marier
2 EX
1ol | ;IJ
N\ 3 x
— ..‘..I
05
48 X3 A0 OO0 AN E3 A2 10 CD ES 2D 00 00 D2 E4 5D 20 04 E2 8D DC 04 Zh PY PP FY
04 X5 9D 80 08 E5 9D €0 04 EO 88 9D Y0 04 00 00 00 00 OO0 OO OO 00 00 00 00 18
) AE AA AA AA AA 00 OO 00 900 00 00 00 00 00 00 OO OO0 00 00 00 00 00
£0 090 00 00 00 00 00 00 00 00 00 20 00 00 00 00 04 00 00 00 00 00 00 00 00 Op :l
Simul 1114 0.00000000

We have pulled the
result off the stack
and put it in r2.
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IMPROVING THE CODE

Few programmers would write the code we used in the previous example. A more reasonable approach is:

AREA ParamTestl, CODE, READWRITE ; make readwrite because we locate the stack in this area

ADR sp, Base ; point to the base of the stack
MOV r0, #0xAB ; dummy value for P in rO
MOV rl, #0xCD ; dummy value for Qin rl
STMED sp!, {r0,rl} ;push Pand Q
BL ADDR ; call the addition subroutine
LDMFD sp!, {r0,r2} ; pull S and P off the stack

Loop B Loop ; park here

ADDR STMFD sp!, {r5,r6,1r} ; push the link register and working registers
LDR r5, [sp, #16] ; get P (buried under the return address and Q)
LDR r6, [sp,#12] ; get Q (buried under the return address)
ADD r5,r5,r6 ; do the addition
STR r5, [sp, #16] ; save result on the stack under the return address
LDMFD sp!, {r5,r6,pc} ; pull return address and working registers
DCD OxFFFFFFFF,0,0,0,0,0 ; stack area

Base DCD OxAAAAAAAA ; stack base and dummy data
END

We need to look at some of the features of this program in greater detail.

STMED sp!,|{r0,rl}

BL ADDR ;call the adder
LDMFED sp!,[{x0,r2} ;pull S and P off the stack
Loop B Loop ;park here

ADDR STMFD sp!, {r5,r6,1r}
LDR r5,|[sp, #16]
LDR r6,|[sp, #12]
ADD r5,r5,r6 ;do the addition

Here we use the store multiple registers
instruction to push two parameters on the
stack.

We use the load multiple registers
instruction to pull the result off the stack
and also balance the stack; that is, push 2
pull 2.

TSter and wor
(buried under the return —_

;get g (buried under the return

Note the locations of the two
parameters. We have pushed a return
address, r5 and r6 (3 x 4 bytes = 12),
so that the two items are 12 and 16
bytes below the top of the stack.

Q

We now store the result on the stack,
overwriting one of the original

STR r5,|[sp, #16] |4 7Save result on the stack under jPparameters.

LDMFED sp!,|{r5,r6,pc}

;pull return address and working registers

This is the return. We use load multiple
registers to restore the original r5 and r6 and
we pull the return address which we directly
load into the program counter, r15.
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Now we can execute this code in debug mode and trace its execution. The next snapshot shows the situation after the code has
been loaded and simulation is about to begin.

&£\ Cengageook \Cengas \ParamtestMod uvprug - pVisemnd ‘M
mz«mmmmwrﬂmwu » - ) .
T e AN XXD IS cif@e SalT]A
—Cee L. Al —
I Bo BE0 Y D[Qi@@,a -3...3... TOR
- X
Vs AFZL Pax:nr::::,cox,i!&mxf! saske readvrits becsuas ve locate the atack In this area j
= Curent ADR sp,Base fpoint to the base uf the steck
RO 000000000 MoV rd, 30x55 - " 5
Rl 00050000 NV rl, 30xCD
R e00000000 SYNFD wpt, (x0, 1)
R3 W D000X0 n ADDR
Re DDX0000N0 LDMFD wp’, (10,2}
RS Q00000000 Locp B Laop
% 0000000 :
R7 DeD0000000 51) ADDR STMPD ap', (5, r6,1r)
Ri &000000%0 — || 219 DR o8, (wp, 816]
R3 05000000 2 bR 6, [ep, #12]
R0 02000000 3 ADD T5,r3,T6 :
R11 00000000 ';" 5T r3, [sp, $1€] Sha watlt oft the stack under the return sddress
Ri2 00000000 uis LDMFD sp’, (¥rS,ré,pc) rpull return address snd vo ng registers
R13(5F) 00000000 1%
RU AR DeDRO00000 W OCL OxFPPFEFFFF, O, O, 0, 0, O ,stack zr=a
R15(FC) De00000000 18 Dasme DCU  OxAARARAN atack base and dommy data -5
# - CPSR 0000003 w| 13 ZND -
R Ly Ty '
[ Mermeey 1 :
Asdress [0
OxP00000007 EZ OF DO 44 EJ AQ 00 AB E3 A0 0 CD Z5S 2D 00 0) EB 00 00 O1 X2 DD 00 00 EA FF Fr FT E2 2D 40 €0 ES 50 30 10 I3 3D &0 0OC
Cx000000281 EQ 8% §G 06 E5 8D S0 10 ES BD 20 €0 FY F¥ Fr FFr 00 00 00 0000 OC 0D D9 00 00 00 00 0C OO 00 ©CO 00 Q0O DD 0D AR
0x000000501 00 90 OC &0 00 00 00 GO 00 20 00 00 00 00 0C 00 ii.\ 00 00 00 00 OC 00 00 00.00 OD 0C 2C 00 00 00 00 0C DO 00 :

BEFTR MENE ETVAr . @e caEiAl
1B MO 2-3~I-J-I- o
3 et ¥
Vsl = m AFZA Poxsn]’est., ts becaias ve locate the atack in Chis area g
= Cusrent [1"3 ADR sp,Base Savw of the steck
RO De000000AR 0 Moy rd, 30xA5 H
Rl 020000CTy i MOV r1,30xCD : for @ in ri
R e00000000 5 SYWFD wpt, (0, 1) [
R} 020000 0= n ALOR ytice
Re DOX000000 i LDMZD wp’, (10, r21 e
RS Q00000000 203 Locp B Laop
B3 0000000 )
7 DeD2000000 V10 ALDR STMFD ap!, (£S5, 06, 11)
R 00000000 — || 213 LOR o8, [#p, 818)
= 05000000 12 DR r6, [ap, #13)
R 0000000 13 ADD  T5,r3,T6
R 02000000 M STR v, [sp, $1€]
Ri2 00000000 s LDMFD sp’, (rS,r6,pc)
R13(5F) 00000044 1%
"W OCL OxFPFEFFFEF, 0, 0, 0, 0, 0 stachk zr=a
18 Dasme DCU  OxAARARAM :ztack base and dommy data -
#_CPSR 500000003 wijjl 13 D =
i ajec | SR Raghtent U d
[Memeer s o x|
3 -
OXP00000007 EZ OF DO 44 E3 AQ 00 AD £3 AD 30 CD XS 2D 00 0) EB 00 00 O1 X2 8D 00 05 EA FF Fr FY I3 JD 40 €0 £3 5D 30 10 ¥3 3D &0 0C
Cx000000221 EQ 85 5G 06 E5 8D S0 10 ES 3D 20 €0 FF F¥ FF FF 00 00 00 00 00 OC 0D 09 00 00 00 00 1 ax an AR AR
Gx000000501 00 00 OC &0 00 00 .00 GO 00 9C 00 00 00 00 OC 00 00 00-00 00 40 OC 00 00 0000 00 00 TT I 00 oc 00 g0 =
| Semstion \ Jit:-o00000000sec |||

Here are parameters P and Q on the stack.

Note that there are above 0OXAAAAAAAA
that we have used as a marker to show the
base of the stack.
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The next snapshot shows the situation immediately before the subroutine return.

e 1Cengagenook | Congageorkbook | ParamtestMod uvpra) - pViswmnd M
Ble far Yiew Doject Flgsh Qedop Pepphesals Jools SVCS  ¥ondow Hels
| Gl - as L XX
I we oo » NA@ESI-[D2-0-2- 8- »-
{ & % 2] PaamTestMod.asm - x
Vsl = (3 ADR sp, Dane g
= Curent 03 MOV T, $0XAB
RO 000X00AH 04 MOV rl,$0xCD
A R000000CT 05 STED sp', (e0, 21
R 00000000 05 8L ALDR
R3 WD000K0 w07 LMD wp?, ir0, r21
R4 DDX000000 $02 Locp B Taop
) D00000T 78 03
55 00000048 10 ADDR STMED sp’, (r5,ré,1r|
R7 00000000 11 LDR =5, [ap, 816) )
3 W0o000000 — | 2 LDR 6, [wp, 413
R 05000000 13 ADD 4,73, 78 )
R 02000000 4 ST rd, [sp,81€)] sxave rasuls on phs stack undar the return address
L DO000N0 15 LoeEp sp!, (r9, r6,pe) spull twiurn eddresz end vorking registers
Ri2 00000000 1%
RII(SP)  wD0OD003E 17 DCh  OXEEFFEFFE, 4, O, 0, 0, O sscaca aves
RU AR OeD00000 14 18 fane DCU OXAARARAAA stack rase and dormy data
12 LN
#CPSR 500000000 #|j|l 2 =
e | B magutans | Jsl==ni )
| Murmzer 1 o x|
-
0X000000007 EZ OF DT 44 E3 AD 00 AD L3 AD 10 CD LS 2D 00 0 F_'-c_f.rn_m_u_:m_ﬂu_n.‘_u_n_u_u] £3 ZD 40 €0 £3 30 30 10 I3 3D &0 OC
Cx000000281 EQ 85 5C 06 E5 8D 50 10 ES 3D 20 €0 FF F¥ FF EF d 90 00 o0 A(90 00 DI JE)AR AR AR AX
0x000000501 00 90 OC &0 00 0C 00 GG 00 90 00 00 00 30 90 00 00 00 00 ac oo oo =l
19

oc 00 D‘ID 0000 00 00 'JGK{ £ 0000 00 00 00

N\

Here are registers r5, r6, and r14 that we This is the result, 0x00000178, that has been
have pushed on the stack. written to the stack by STR r5, [sp, #16]

The final snapshot shows the situation at the end of the program after the data has been pulled off the stack.

£ 1Cengagenook | Congageorkbook | ParamtestMod uvpra) - pViswmnd s m
Bie | fot  Yiew Boject Flash Qedop  Pepphesasis Jools IVCS  ¥ondow  Help B : -
BECT IR (EARAEXR LIS cae@e ca[F]A
I RO BEon v Da@EGI-[D]3-.-2- 8- «-
| o x [2) ParamTes | - x
Regeter Value = (3 ADR  wmp,Dane g
© Current a3 MoV rd, $0xAB
04 MOV rl,$0xCD
05 STVED sp', (e0, 21
05 a1 ALDR
[ind LIMYD wp', ir0, 21
02 Locp B Laop
03
10 ADDR STMED sp’, (rd,ré,1r)
11 LoR S5, [ap,816)
12 LDR  r6, [wp,8130)
13 ADD i, r, re
" STB  rI, [sp,#16]
15 LDMFD sp', (r5,r€,po)
1%
7 DCE OxESFFPFFF, 0, O, 0, 0, O SCICR ares
18 Sans DCU OxAARARAAL stack rase and duwmy data
ERC
2
VKT
I
ool \
Ox200000007 EZ OF \DC 4W EJ AQ 00 AB I3 AD 10 CD XS 2D 00 0% EA Fr ¥r Fr E2 2D 40 €0 ES 30
Gx0000002281 EQ 85 G O E5 8D 50 10 E& BD 20 €0 rr Iy 00 0D-00 9C 00 1€ 9C 00 &0 AB 3JC 00 DI
0x000000501 00 00 AC 04 00 00 .00 GO 00 20 00 00 00 00 2 00 00 00 90 00 00 3¢ 00 00 04 00 0C =l
o

The stack has been balanced and the stack
These are the two values pull off the stack pointer is now back where it started at

into r0 and r2. 0x0000004C.
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PASSING A PARAMETER BY ITS ADDRESS

Some languages let you pass parameters by reference rather than by value; that is, you send the address of the parameter to a
subroutine. The 68K processor has a push effective address instruction, PEA that pushes a 32-bit address on the stack. ARM
programmers have to use conventional memory store instructions.

When you retrieve a parameter passed by reference (address), you have to pull the address off the stack (or read it from the
stack) and then access the parameter by means of address register indirect addressing. Consider the following fragment of code
that pushes an address (initially in register r0), call a subroutine, and then retrieves the actual parameter (i.e., its value) in the
subroutine..

STR r0, [sp,#-4]1! ; Push the address of parameter P on the stack (address is in r0)
BL ABC ; Call subroutine ABC and save the link register
ABC STR 1r, [sp,#-4]1"! ; Save the return address on the stack
LDR rl, [sp, #4] ; Read the address of parameter P under the return address
LDR r2, [rl] ; Get the value of parameter P
LDMFD sp!, {pc} ; Return by loading the PC with the return address from the stack

Retrieving a parameter by reference is a two-step operation. The first part is to get the parameter’s address, and the second part
is to get the value pointed at by that address. In this case we first load the address of P using LDR rl1, [sp, #4]to get the
address of P in rl and then use LDR r2, [r1]to get the value of P in r2. We have put these two lines in blue to highlight their
importance.

Let’s use this code in an actual program. Below, we use subroutine ABC to perform P + 1. The effect of this program should be
to add 1 to P’s initial value 0x12345678 to give 0x12345679 in the memory location defined as P. Since there are 11
instructions before this location, the address of P is 0x0000002C (i.e., 11 x 4 expressed in hexadecimal).

AREA PassByRef,CODE,READWRITE ; Make readwrite because we locate the stack in this area
ADR sp, Base Point to the base of the stack
ADR r0,P Load r0 with the address of parameter P
STR r0, [sp,#-4]"! Push the address of parameter P on the stack (address is in r0)
BL ABC Call subroutine ABC and save the link register
Moi B Moi Infinite loop to end the program

Ne  Ne Ne N

~.

Save the return address on the stack

Read the address of parameter P under the return address

Get the value of parameter P

Add 1to P

Save the parameter in the calling environment

Return by loading the PC with the return address from the stack

ABC STR 1r, [sp,#-41!
LDR rl, [sp, #4]
LDR r2,[rl]
ADD r2,r2,#1
STR  r2,[rl]
LDMFED sp!, {pc}

Ne  Ne  Ne Ne N

~e

P DCD 0x12345678

DCD OxFFFFFFFF,0,0,0,0,0
Base DCD OxAAAAAAAA

END

Location of parameter P and its value
Stack area
Stack base and dummy data

~e N

~.

The first instruction, ADR sp, Base, loads the stack pointer with the initial base of the stack, and the second instruction, ADR
r0, P, loads r0 with the address of P. It is important to stress here that we are loading the address of P (0x0000002C) and not
it’s value (0x12345678).

The following snapshot demonstrates the situation immediately after the program has been loaded. We’ve highlighted the data
area and the stack.
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) 1:\ regagelicek | C sngageWnrkbook | PassAddress svpra) - ifisonnd M

ED Ede View fvajec Fgih  Debup Fepohersn Jooks S Wedow e 00
IET T =i 9 @ caEIy
m WO BEou e 3193[2@;: s 0w -
8 X3 pantyRefave | v x
Vb A m -
W Cusrerd @ AREA FassByRef,CODE, SEADWRITE =
a0 D000 m | ADR  sp.Boss
At 000000 ™ ADE  TO,F
R2 BA00N000 " STRr0, (ep, 4-4)) 01
a3 330000008 ) BL  ABC
En DI0000000 0 Moy B Moy
as 000000 ]
AE SA0000000 03 AR  STR  ir, [wp,0-4)!
a7 S00000000 10 Ok 1, fap, 4]
RE D00000000 1 B r2,[ri]
RY acooxe N2 ADD  r2,r2,8:
A0 D20000000 1 STR r2, 0r3)
a1 20000003 1 LOMYD agt, (pe) sack
an D000 15
AN3SH D000 e E DOC  OXi2345E76
AR O0000000 " DSC OXTITITIIT,D,9,0,0,0
A5 P0 S20000000 | 18 fase OCC OXANAAARAR -
¥ CPSR 20003003 will 19 ENE
B g .ml ] IJ‘ |
(Mensay t
Adcrear: |
0X00000090; E2 SF DO £0 E2 OF 00 20 ES 2D 00 04 EB 0O 00 00 A FF FF FE E5 2D E0 04 ES SD 10 0 EG 91 20 00 E2 €2 20 01 ES B2 20 00 E9 3D 20 00(12 36 56
OXCV0O00I0: (A A& A% 32 Jo0 00 00 00 09 ©0 90 90 00 09 0D OO ©0 Q0 00 00
< - 2 o0 QU 00 O%pO0 90 00 00 00 0O 90 00 00 00 00 0O 00 O3 00 40 00
& Car tam jm: \\
R [ omwont e 1 | T
This is the value of P
> Stack base marker
Endkof code and data The space we’ve (0x12345678) at memory
marker left for the stack 0x000004C location 0x0000002C.

The next snapshot shows the state of the system up to the start of the subroutine. You can see that rO contains the address of
parameter P (i.e., 0x0000002C). The stack pointer has been moved up from its initial value of 0x00000040 to 0x00000044.

ISl . an= A cdr@le eI
[ TN METRAETY (-~ DenE T Tt nP
L L B XD ] peliySetaen - x
m -
[y © ASEA  PassdyRet,CODK, REATNWITE -
RS Ge2000000C el aze »p,Saze
H ON0000008 4 Ale o, ¥
" OP0000000 (3 TR 0, (Wp,.2-4 ssdrazs 1w )
n eA000000 06 Bl R -
At Oed000000 W M=t Moz
RS 20000008 w
L5 020000006 & hBC SR v, (ep, -4
n (W 2000000¢ w D8 i, lap,#4) - adrress
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The stack pointer has changed The address of P on
from 0x00000048 to 0x00000044 the stack
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The next snapshot traced execution to the point at which the address of P has been read off the stack into r1, but the value of P
has not yet been loaded into r2.
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Register r1 now holds the address ) X
of P The link register

saved on the stack

The final snapshot shows the sitiation at the end of the program. The value of P in memory has been updated.
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The value of P in memory.
It’s been updated.
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The Stack Frame and Low-Level Support for High-Level Languages

We now look at how a low-level language provides support for local variables in subroutines, and discuss how parameters are
passed to and from procedures in greater detail.

In addition to the parameters passed between a subroutine and its calling program, a subroutine sometimes needs local
workspace for its temporary variables. Each time the subroutine is called, a new workspace must be assigned to it.

Suppose task A is using a subroutine and workspace has been allocated for use by the subroutine's variables. Assume a task
switch takes place while task A is executing the subroutine and task B uses the same subroutine. Clearly, task B must be
allocated new workspace for its own variables, if it is not to corrupt task A's variables. The stack provides a convenient
mechanism for implementing the dynamic allocation of workspace. This storage allocation is dynamic because it is allocated to
variables when they are created and then de-allocated when the variables are no longer required.

Two items closely associated with dynamic storage techniques are the stack frame (SF) and the frame pointer (FP). The stack
frame is a region of temporary storage at the top of the current stack. The frame pointer, which is in an address register, points
to the bottom of the stack frame. Figure (a) illustrates the state of the stack after a subroutine call and figure (b) illustrates the

stack frame that has been created on top of the subroutine’s return address.

A stack frame can exist in several forms. It is, of course, programmer, dependent. Figure (b) shows a stack frame with a stack
that grows towards low addresses. Note that, in this example, the frame pointer points to the empty base of the frame above the
return address on the stack.

Memory Memory
o —— — S ——
Stack pointer
A
SP >
Stack frame q
Frame pointer
FP >
\ 4
Sp » Return address Return address
;/'\_/\ /\/—\
a.The state of the stack immediately after a subroutine call b. The state of the stack after creating a stack frame

Let’s consider the creation of a simple stack frame as figure (b) above demonstrates. We look at a more realistic example later.
First we need to move the stack pointer up by one word to point at the empty base of the frame. We can do this by

SUB sp, sp, #4. The next step is to make the frame pointer, fp, point at the base of the stack, which we can do with

MOV f£p, sp; that is, we copy the stack pointer into the frame pointer. A stack-frame is then created by moving the stack
pointer up by d locations at the start of a subroutine. For example, reserving 16 bytes of memory is achieved by executing
sub sp, sp, #-16. Once the stack frame has been created, local variables can be accessed via the stack pointer and a
suitable offset. Consider the following code:
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AnySub SUB sp, sp, #4 ; Move the stack pointer up one word past the return address on the stack
MOV fp, sp ; Set up the frame pointer to point to the top of the stack
SUB sp,sp, #16 ; Move the stack pointer to the top of the stack frame (we’ll allocate 16 bytes)

; The subroutine proper (i.e., the code goes here)

ADD sp, sp, #20 ; Collapse the stack frame (i.e., 16 + 4)
MOV pc,1lr ; and return from subroutine

Before a return from subroutine is made, the stack frame must be collapsed by an ADD sp, sp, #20 instruction. This simply

moves the stack pointer down. In practice, this code would not be used, because it doesn’t preserve the old frame pointer; that
is, the frame pointer is destroyed by this code.

A better way of implementing a stack frame is to save the old frame pointer on the stack before creating the frame itself; that is,

AnySub SUB sp,sp, #4 ;  Move the stack pointer up to create space for the old frame pointer
STR fp, [sp] ; Save the old (existing) frame pointer on the stack
MOV fp, sp ; Set up the frame pointer to point to the base of the stack
SUB sp,sp, #16 ; move the stack pointer to the top of the stack frame

; The subroutine proper

MOV sp, fp ; Restore the stack pointer and collapse the frame

LDR fp, [sp]l,#4 ; Restore the old (existing) frame pointer on the stack
ADD sp,sp, #4 ; Move the stack pointer down to point to the return address
MOV  pc,lr ; and return from subroutine

In practice the code would be more compact with the ARM’s facilities (e.g., auto incrementing and decrementing addressing
modes) being better used. Consider the following example. In this case consider the following example where a subroutine is
called using a BL instruction (branch with link). In this case the return address is not saved on the stack.

BL ABCD ; Call subroutine ABCD

ABCD STR fp, [sp,#-4]! ; Save the old frame pointer on the stack (pre-indexing)
MOV fp, sp ; Set up the frame pointer to point to the base of the stack
SUB sp,sp, #16 ; Move the stack pointer to the top of the stack frame

; The subroutine proper

MOV sp, fp ; Restore the stack pointer and collapse the frame

LDR fp, [spl, #4 ; Restore the old frame pointer on the stack and post-increment the stack
MOV pc,1lr ; Return

The following snapshot of the simulator demonstrates this fragment of code in the simulator using some dummy data to keep
track of register values.
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Up to now, we’ve demonstrated simple examples of stack frames. The next step is to provide a more realistic (albeit simple)
example. This example will demonstrate various aspects of machine-level programming; for example, the use of registers
(global and local), the use of temporary storage (stack frames), and parameter passing.

PAssING PARAMETERS TO AND FROM A STACK FRAME

We are going to use a subroutine that is called by pushing the return address on the stack. We pass two parameters to the stack;
one by value and one by reference. Let’s assume that the stack performs B = A? + B, where A is passed by reference and B by
value.

In this example, we use two registers in the subroutine, rl and r2, that are saved on the stack at the start of the subroutine by a
store multiple registers and then retrieved at the end of the subroutine by a load multiple registers. One register, r0, is a global
scratchpad and does not have to be preserved by the subroutine. Finally, we create a stack frame for one variable in the
subroutine.

The code for this example is given below. We have created initial dummy values for registers so you can see them when they
are saved in memory and used OXFFFFFFFF as the stack base in order to make the stack visible in the memory map.

AREA FrameParams, CODE, READWRITE

ADR sp, Stack ; set up the stack pointer

LDR fp,=0xAAAAAAAA ;dummy value for fp

LDR rl,=0x11111111 ;dummy value for rl

LDR r2,=0x22222222 ;dummy value for r2

ADR r3,A ;r3is a pointer to A

LDR r4, [r3] ; get parameter A

STR rd, [sp,#-4]1"! ; push the value of A on the stack

ADR r5,B ; get the address of B

STR r5, [sp, #-4]! ; push the address of B on the stack

BL SumSq ; call the subroutine

LSR r0, [r5] ; if it worked, rO should contain 7
Again B Again ; parking loop

V5.0
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SumSq STMDB sp!,{rl,r2,1lr} ;save registers on the stack

STR fp, [sp,#-41"! ; Save the old frame pointer on the stack (pre-indexing)

MOV fp, sp ; Set up the frame pointer to point to the base of the stack

SUB sp,sp, #4 ; Move the stack pointer to the top of the one-word stack frame
LDR rl, [fp, #20] ; Get the value of A off the stack inrl

MUL r2,rl,rl ; Square A

STR r2, [fp, #-4] ; Store the value of A squared in the stack frame

LDR r2,[fp, #16] ; Get the address of B off the stack in r2 (reuse r2)

LDR rl,[r2] ; Get the value of B inrl (reuse rl)

LDR r0, [fp, #-4] ; Get the value of A squared in rO

ADD rl,rl,r0 ; Add B to A squared

STR rl, [r2] ; Return the result to the calling environment

MOV sp, fp ; Restore the stack pointer and collapse the frame

LDR fp, [spl, #4 ; Restore the old frame pointer on the stack and post-increment the stack

LDMIA sp!,{rl,r2,pc} ;Restore registers and return

A DCD 2 ; dummy value for A

B DCD 3 ; dummy value for B
SPACE 16 ;reserve 16 bytes for the stack

Stack DCD OXFFFFFFFF ; dummy data for the base of the stack
END

The next simulator snapshot shows the simulator window when the program is first loaded.
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Here’s the base of the stack
which will grow upwards
towards lower addresses.

Here’s literals that we load into
registers initially. Remember that the
ARM processor can create 32-bit

The next memory map demonstrates the situation immediately before the subroutine call.
have been loaded with the markers 0x11111111 and 0x22222222. Register r4 contains th
contains the address of parameter B (i.e., 0x00000070).

literals by storing them in memory as a
pool of constants and then using
pointer-based addressing to retrieve
them

You can see that registers rl and r2
e parameter A (i.e., 2) and register r5

The stack pointer, sp or r13, contains the value 0x00000008C and is pointing at the last value pushed on the stack; that is, the

address of B. Finally, the frame pointer, contains the marker OXAAAAAAAA.
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The next memory map shows the situation in the subroutine after saving r1, r2, and the link register on the stack.
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The stack pointer contains 0x00000080 and is pointing at
the sequence rl, r2, rl13 (the link register containing the
return address 0x00000028),

The following figure demonstrates the structure of the stack in this example. Note that addresses on the left are given with
respect to the frame pointer. This helps to relate the stack to the offsets in the above code.
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The following figure shows the memory map after squaring A and putting it in the stack frame.
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Here we create the one-word stack frame.
First, the old value of the frame pointer is
pushed on the stack. This value is a marker,
O0XxAAAAAAAA, which we should see on the

Then we copy the stack pointer to the frame
pointer. The frame pointer’s value is now
0x0000007C.

Here we copy a parameter
from the stack to the stack

«| frame. Note that address

offsets. The value of A is 20

es (5 words) below the
frame pointer and the stack
frame’s single location is 4
bytes above it.

g x|
[
%0 T3 aF DO 8C ES SF ES SF 10 SC ES SF 30 8C £2 8F 30 30 D% £3 SF 50 3C ¥S 3D 50 04 £5 00 00 01
0028; Z3 35 00 29 ) 40 06 O 04 £1 AD BC © 14 X0 02 01 31 E3 OB 20 04 £8 20 10
10 oc 00 E1 AQ DG OB 2§ 00 © 92 OC 00 09 03 00 00 00
0 00 oC 00 00 00 00 00 00 OC
0 00 00 00 00 00 0C 00 00 20
00 00 00 00 00 00 ve oo =i
f [n-otowo000vee | |
This is the old value of the This is the value of
This is the value of A% one frame pointer, r11, saved on the parameter A at 5 words (20
word above the frame pointer stack. bytes) below the frame
at [fp] — 4. i L
The stack pointer is pointing at
this location.
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The next memory map shows the situation after storing the result in the calling environment and before cleaning up the stack

frame.

\Cengagebook \GengageWorkBook \Example 1 Luvpre) - yVisiond Anlg
Bie fait Yew Dojet Fath Debug Peiphersin Took SWS  Window Nelp ) g
| JGSW@ = oal - - =annjxxen® = [ri@e safSia
g Ro Mo n o Jn@ 5 5-.- - - |
Regiciens s x |£] ParamPassingFrame asm - X
Rageter | Vi [ AHEA  Framefacams, CODE, FEADWAITE =
= Cusrent [ ADF sp, Stack -~
RO 00000002 03 LR p, =
# De0000037
 rd &mmoﬂm‘ LoR *2,=0%22222222
3 QeD00000SC 3. A
7 00000002 4, (73]
s Ox00000070 T4, [sp, 4-4]"
P m&&go Here’s the rest of the
R? 0000020 3, [s5; computation. At the start of this
o pmccoetl] 1L prot ek o code, the value of A2 is in the
RY 00000000 112 Again B Again stack frame at [fp] — 4.
i3] Oe0000007C "
R‘fil - Z‘O‘“";’g - oy z"[;;‘ ;ff;?"‘ We first retrieve the address of
RILR &mc - \7 W fp.ap parameter B off the stack at 4
18 SUE ap.sp, it words (16 bytes) below the
#CPSR bpmscionas g hec: L i frame pointer. The address is
b STR  ra, (fp.é-4 loaded into r2. The red lines
rd Lor r#16] show the contents of 2 and the
212 s L location pointed at. This
s ADD £0 location contains 7, the final
2 STR [ value of B, because the
000050 g 3: ::' ?;m # following codes changes the
Supervacr = LOMIA sp’,iri,2,pe) original value from 3to 3 + 22,
4 »
AN ]a; S - The next operation,
n SpACE i3 LDR r0, [fp, #-4] loads the
M Srack :if OxFYTTIRTS ca value of A2 that we’ve saved in
Drrmec | B Regten | I‘I il the stack frame. We then add
i / this to the value of B and save
e - the sum in B in the calling
Aover [0 / environment using the pointer in
0x00000000: T3 4F DO 8C TS SF 80 8C ES SF 10 oC £S5 SF 30 8C €2 8F 30 %6 £5 93 40 00 £3 30 30 05 £3 *F 30 3C r2. This is the end of the
Ox000Q0028: Z3 95 0Q 00 ER ¥r FY FE E9 2D 40 0€ ES 20 B0 04 E1 AQ BC OD EZ2 4D DO ©O4 X3 9B & \t t
01 31 computation.
Ox00000050: ES 92 10 00 ES IB 00 04 EO 81 10 OC E5 82 10 00 E1 AQ DC OB £4 3D B0 04 X& BD 0C 00 00 92
Ox00000078: Q00 00 04-AR RA AX AX Il 11 12 31 22 22 22 22 30000 32000000 700000 CDCRFF PF IT IZ 1
0x000000A0: 22 22 22 22 OC 00 00 OO0 OD 00 Q0 OC 0D 00 OO OD 00 QO OC OD Q0 00 O0 00 00 OC OD 00 00 OO0 00 00 QOC OD 00 00 OO0 00 00 QOC
0%x0000COCE: Q0 00 00 00 00 OO 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO0 00 00 00 00 OO0 00 OO0 00 00
w 00 00 00 00 00 90 00 00 40 00 00 00 90 00 0 40 00 O0 00 00 00 00 40 Q00 ©D 00 00 00 00 00 Q0 00 0D 00 00 O 00 00 =

TSR ‘;luun _:]llml
5 ==
Sep one me ! | Semuletion N:0m0000ec | |
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In the final snapshot of memory we show the memory map at the end of the program. A return has been made to the calling
program and we have completed the program and are in a parking loop. All the registers have been reset to their original values
except r13, the stack pointer, the program counter, and rO which was a global scratchpad register.

g
Ble fant Yew Dojed Fath Debug Peipheran Took $WS  Wedow Nelp ‘ ]
INSEP s a8 v e = RERENID D@ e oal@dsl
& B0 Mo o ama{.[,;[g.]g_[.g...;... v |
Meguatens B X 4] PaamPassigFrame asm - X
Fageter | Vi N = OB f3, ~OXARAAAARA j
= Cusment 04 LR rl,=0 1
[ LR 2,%9
R1 FTETED 05 ADS 3.5
F2 22222222 07 e rd, [r3]
R3 Ae0000005C 2 STR r4, [sp, #-4]
7l 00000002 03 ALa S50
RS De 00000070 10 STR v, [sp, #-4]"
Re Qel0000000 1" BL Sunlq
R 00000000 12 LR r0, [r3]
[ Q00000000 13 hgein B Again
RS Q=00000000 "
RY 00000000 15 SumSg STMDE g, (rl,v2,1r)
in TRAAARAAAA e TR 5, [=p, 4-4)
Rs2 Oe0000000 7 o 3, sp
R13(SP) Qel00000AC 13 sUR sp,sp, #4 .
R ILR) 200000028 13 PR rl, [fp,220]
20 MUL r2,ri,rl
® CPSR Q=00000003 21 sTR r2, [fg,8-4]
# SPSR B00000000 22 Lok 2, (Ep,816)
= Usae/Syster 23 LoR 1, (r2)
3 Famt Ntomot M LR 0, [fp,#-4]
5 - rtemat 2 ADD rl, rl, r0
T Superviser 26 STR rl, [r2]
sl Abot 27 wov sp, Ip
2~ Undefirad 2 LoR . [wp), 04 crement Che sTach
= rtemel 23 LOMIA w3, (v, r2,pc)
s De0000002C E =
W:de [ n A Dco z
Raves € R 2 DCD
Sec 2 00000000 B 2
M Stack DCD OxIEFEEFEF
5 ESD
x =
-
izlermea | R Regy ] |+ | _Lr-
| Memaey 1 8%
sz [0 E]ﬂl
0x00000000: T3 SF DO 8C €S SF 850 BC ES SF 10 oC E5 3 SC B2 8F 30 %4 £5 93 40 00 TS 3D 40 05 L3 $F 30 3C £ 2D 50 04 £8 00 00 01
0x00000028;: 3 35 00 90 ER Fr FT FE E3 2D 40 0€ ES 04 £1 AD BC OD EZ 4D DO 04 I3 9B 1D 1€ X0 02 01 31 ES OB 20 04 E5 S0 20 10
0x000Q0050: ES 92 10 00 E5 IB 00 04 EJ 81 10 OC BS 00 E1 AQ DC OB E4 30 B0 04 Xf 3D 30 06 00 00 00 492 3C 02 00 27 00 00 00 OC
0x00000078: 00 00 00 04 AR AR AR AX Il 11 12 31 22 22 27 22 00 Q0 00 32 00 00 00 70 00 00 OD 02 FF PF FF FF AR AR AA A& I1 11 12 12
0x000000A0: 22 32 22 22 OC 00 00 OO0 00 00 Q0 OC ©D 00 00 O0 00 00 OC ©D 00 00 O0 00 00 OC C0 00 00 Of 00 00 OC C0 00 00 O0 0O 00 OC
0x000000CE: Q0 00 00 00 00 00 00 00 00 02 00 00 00 00 00 00 02 00 00 00 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 20
0x000000¥0: 00 60 00 G0 00 G0 00 90 00 0O U0 00 ©0 00 90 00 ©0 40 00 ©b 00 00 00 ) U0 00 O) 00 00 00 OU 00 90 ©0 0O 90 06 00 ue oo =i
e Cak ek | gdioa _Jllmxl
] Commans |
| | Jemutetinn [n:00000000see | |

The point of this example was to demonstrate the stack frame and passing parameters both be reference and value.

This is both a good example and a bad example. It is good in the sense that it is relatively simple. It is bad in the sense that no
one would write this code because a stack frame is not necessary because there are enough registers for the local storage.

However, this example does illustrate how much overhead is associated with accessing data in memory.
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APPENDIX

ARM Mnemonics

This appendix provides brief details of the part of the ARM’s instruction set. We haven’t included instructions that operate on

the coprocessor.

ADC
ADD
AND

BIC
BL
BX

CMN
C™MP
EOR

LDM
LDR

MLA
MoV
MRS
MSR
MUL
MVN

ORR
RSB
RSC
SBC

STM
STR
SuUB
SWI

SWP

TEQ
TST

V5.0

Add with carry
Add
AND

Branch

Bit Clear

Branch with Link
Branch and Exchange

Compare Negative
Compare
Exclusive OR

Load multiple registers
Load register from memory

Multiply Accumulate

Move register or constant

Move PSR status/flags to Register
Move register to PSR

Multiply

Move negative

OR

Reverse Subtract

Reverse Subtract with Carry
Subtract with Carry

Store Multiple

Store register to memory
Subtract

Software Interrupt

Swap register with memory
Test bitwise equality
Test bits

Rd < Rn + Op2 + Carry
Rd < Rn + Op2
Rd <~ Rn AND Op2

R15 « address

Rd <~ Rn AND NOT Op2
R14 <« R15, R15 < address
R15 < Rn, T bit<— Rn[0]

CPSR flags <~ Rn + Op2
CPSR flags <— Rn - Op2
Rd <~ Rn ® Op2

Rd <« [address]

Rd :=(Rm - Rs) +Rn

Rd < Op2

Rn <~ PSR

status/flags PSR <— Rm

Rd <~ Rm - Rs

register Rd <— OxFFFFFFFF EOR Op

Rd < Rn OR Op2

Rd <~ Op2 - Rn

Rd <~ Op2 - Rn -1+ Carry
Rd <~ Rn-0p2 -1+ Carry

[address] < Rd
Rd < Rn - 0p2
OS call

Rd < [Rn], [Rn] <~ Rm
CPSR flags <~ Rn EOR Op2
CPSR flags <~ Rn AND Op2
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