
Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

COMPUTER

ORGANIZATION

AND

ARCHITECTURE

Chapter 3

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

THE INSTRUCTION SET ARCHITECTURE

2

In this set of lectures, we:

• examine the stored program machine and show how an

instruction is executed

• introduce instruction formats for memory-to-memory,

register-to-memory, and register-to-register operations

• demonstrate how a processor implements conditional

behavior by selecting one of two alternative actions

depending on the result of a test

• describe a set of computer instructions and show how

computers access data (addressing modes)

• introduce ARM’s development system and show how

ARM programs are written

• demonstrate how the ARM uses conditional execution to

implement efficient code.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

3

Figure 3.1 illustrate the structure of a simple hypothetical stored program computer.

The CPU reads instructions from memory and executes them.

Temporary data is stored in registers such as r1 and r2. The PC, program counter, is

the register that steps through the program. That is, the PC points at the next

instruction to be executed.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

4

Computer Architecture

The word architecture in the expression computer architecture is

analogous to the same word in the world of building because it

indicates structure and implies design and planning. Computer

architecture describes the structure of a computer from the

perspective of the programmer or compiler writer rather than that of

the electronic engineer.

The origins of computer architecture go back to the early 1960s when

each new computer was different from its predecessors and had a

unique instruction set. IBM changed computing with the System/360

series, which had a common architecture and instruction set across all

models. Each model executed the same instructions, so you could

upgrade from a low-cost machine without having to rewrite all your

programs. In 1964, this was a radical notion. Forty years later, it is

common practice.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

5

Instruction Formats

A computer executes instructions from 8 bits wide to 80 bits wide.

The instruction format defines the anatomy of an instruction (the

number of bits devoted to defining the operation, the number of

operands, and the format of operands).

Consider the following examples of instructions. The examples in

red show how an instruction might be described in words and

below are several examples of actual instructions.

LDR registerdestination,memorysource

STR registersource,memorydestination

Operation registerdestination,registersource1,registersource2

LDR r1,1234

STR r3,2000

ADD r1,r2,r3

SUB r3,r3,r1

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

6

Features

A stored program machine is a computer that has a program in digital

form in its main memory. The program counter points to the next

instruction to be executed and is incremented after each instruction has

been executed.

The program and data are stored in the same memory.

In reality, today’s computers store programs and data is separate cache

memory. This detail does not affect the following discussion.

A stored program operates in a fetch/execute two-phase mode. In the

fetch phase the next instruction is read from memory and decoded.

In the execute phase the instruction is interpreted or executed by the

CPU’s logic.

Modern computers are pipelined, and fetch and execute operations

overlap.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

7

A stored program computer has several registers.

MAR The memory address register stores the address of the location in main

memory that is currently being accessed by a read or write operation.

MBR The memory buffer register stores data that has just been read from

main memory, or data to be immediately written to main memory.

PC The program counter contains the address of the next instruction to be

executed. Thus, the PC points to the location in memory that holds the

next instruction.

IR The instruction register stores the instruction most recently read from

main memory. This is the instruction currently being executed.

r0 - r7 The register file is a set of eight general-purpose registers r0, r1, r2, …,

r7 that store temporary (working) data, for example, the intermediate

results of calculations. A computer requires at least one general-

purpose register. Our simple computer has eight general-purpose

registers.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

8

We are going to use the ARM processor to introduce assembly language and a

modern ISA. However, we begin with the description of a very simple

hypothetical computer to keep things simple.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

9

Structure of a

Computer

The program counter

supplies an address to

the MAR which holds

it while the instruction

is looked up in

memory.

The instruction is

loaded into the

memory buffer

register, MBR, and

then copied to the

instruction register, IR

where the op-code is

decoded.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

10

Structure of a

Computer

In the execute

phase, the operands

may be read from

the register file,

transferred to the

ALU (arithmetic

and logic unit)

where they are

operated on and

then the result

passed to the

destination register.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

11

Structure of a

Computer

If the operation

requires a memory

access (e.g., a load or

store), the memory

address in the

instruction register is

sent to the memory

address register and

a read or write

operation performed.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

12

Fetch/execute cycle in RTL

FETCH [MAR] [PC] ;copy PC to MAR

 [PC] [PC] + 4 ;increment PC

 [MBR] [[MAR]] ;read instruction pointed at by MAR

 [IR] [MBR] ;copy instruction in MBR to IR

LDR [MAR [IR(address)] ;copy operand address from IR to MAR

 [MBR [[MAR]] ;read operand value from memory

 [r1] [MBR] ;add the operand to register r1

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

13

Fetching and Executing an Instruction

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

14

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

15

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

16

DEALING WITH CONSTANTS

Suppose we want to load the number 1234 itself into register r1.

Such a number is called a literal operand.

ADD r0,r1,#25 adds the value 25 to contents of r1 and puts sum in r0

Figure 3.4 illustrates the data paths required to implement literal operands.

A path from the instruction register, IR, routes a literal operand to the

register file, MBR, and ALU;

When ADD r0,r1,#25 is executed, the operand r1 is routed from the operand

field of the IR, rather than from the memory system via the MBR.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

17

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

18

SAMPLE INSTRUCTIONS

LDR r0,address Load the contents of the memory location at address

into register r0.

STR r0,address Store the contents of register r0 at the specified

address in memory.

ADD r0,r1,r2 Add the contents of register r1 to the contents of

register r2 and store the result in register r0.

SUB r0,r1,r2 Subtract the contents of register r2 from the contents

of register r1 and store the result in register r0.

BPL target If the result of the previous operation was positive,

then branch to the instruction at address target.

BEQ target If the result of the previous operation was zero, then

branch to the instruction at address target.

B target Branch unconditionally to the instruction stored at

the memory address target. This executes the

instruction at address target.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

19

FLOW CONTROL

Flow control refers to any action that modifies the strict instruction-by-

instruction sequence of a program.

Conditional behavior allows a processor to select one of two possible

courses of action.

Figure 3.5 shows the information paths required to implement

conditional behavior.

A conditional instruction like BEQ results in either continuing program

execution normally, or loading the program counter with a new value and

executing a branch to another region of code.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

20

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

FLOW CONTROL

21

Figure 3.6 illustrate

how the result from the

ALU can be used to

modify the sequence of

instructions.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

STATUS BITS (FLAGS)

22

When the computer performs an operation, it stores status or condition

information in the CCR. The processor records whether the result is zero

(Z), negative in two’s complement terms (N), generated a carry (C), or

arithmetic overflow (V).

 11011100

 +11000000

 110011100

Z = 0, N = 1

C = 1, V = 0

CISC processors, like the Intel IA32 update status flags after each

operation.

RISC processors, like the ARM, require the programmer update the status

flags.

The ARM does it appending an S to the instruction; for example SUBS or

ADDS.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

EXAMPLE OF A CONDITIONAL OPERATION

23

 SUBS r5,r5,#1 ;Subtract 1 from r5

 BEQ onZero ;IF zero then go to the line labeled ‘onZero’

notZero ADD r1,r2,r3 ;ELSE continue from here

 .

 .

onZero SUB r1,r2,r3 ;Here’s where we end up if we take the branch

Explanation

SUBS r5,r5,#1 subtracts 1 from the contents of register r5. After

completing this operation the number remaining in r5 may be zero or it

may not be zero.

BEQ onZero forces a branch to the line labeled ‘onZero’ if the outcome of

the last operation was zero.

Otherwise the next instruction in sequence after the BEQ is executed.

This implements: if zero then r1 = r2 + r3 else r1 = r2 – r3.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

EXAMPLE OF A CONDITIONAL OPERATION

24

 X = P - Q

 IF X > 0 THEN X = P + 5

 ELSE X = P + 20

 LDR r0,P ;Load r0 with the contents of location P

 LDR r1,Q ;Load r1 with the contents of location Q

 SUBS r2,r0,r1 ;Subtract the contents of Q from P

 ;to get X = P - Q

 BPL THEN ;IF X 0 then execute the ‘THEN’ part

 ADD r0,r0,#20 ;ELSE Add 20 to the contents of r0 to get P + 20

 B EXIT ;Skip past ‘THEN’ part to ‘EXIT’

THEN ADD r0,r0,#5 ;Add 5 to r0 to get P + 5

EXIT STR r0,X ;Store r0 in memory location X

 STOP

P DCD 12 ;These three lines reserve memory space for

Q DCD 9 ;the three operands P, Q, X. The memory

X DCD ;locations are 36, 40, and 44, respectively.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

EXAMPLE OF A CONDITIONAL OPERATION

25

 LDR r0,P ;Load r0 with the contents of memory location P

 LDR r1,Q ;Load r1 with the contents of memory location Q

 SUBS r2,r0,r1 ;Subtract Q from P to get X = P - Q

 BPL THEN ;IF X 0 then execute the ‘THEN’ part

 ADD r0,r0,#20 ;ELSE Add 20 to the contents of r0 to get P + 20

 B EXIT ;Skip past ‘THEN’ part to ‘EXIT’

THEN ADD r0,r0,#5 ;Add 5 to r0 to get P + 5

EXIT STR r0,X ;Store r0 in memory location X
 STOP

P DCD 12 ;These three lines reserve memory space for

Q DCD 9 ;the three operands P, Q, X. The memory

X DCD ;locations are 36, 40, and 44, respectively.

Here’s where the test

and conditional

branch take place

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

EXAMPLE OF A CONDITIONAL OPERATION

26

 LDR r0,P ;Load r0 with the contents of memory location P

 LDR r1,Q ;Load r1 with the contents of memory location Q

 SUBS r2,r0,r1 ;Subtract the contents of Q from P to get X = P - Q

 BPL THEN ;IF X 0 then execute the ‘THEN’ part

 ADD r0,r0,#20 ;ELSE Add 20 to the contents of r0 to get P + 20

 B EXIT ;Skip past ‘THEN’ part to ‘EXIT’

THEN ADD r0,r0,#5 ;Add 5 to r0 to get P + 5

EXIT STR r0,X ;Store r0 in memory location X
 STOP

P DCD 12 ;These three lines reserve memory space for

Q DCD 9 ;the three operands P, Q, X. The memory

X DCD ;locations are 36, 40, and 44, respectively.

This is an

unconditional branch

that prevents the

following instruction

being executed.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

EXAMPLE OF A CONDITIONAL OPERATION

27

 LDR r0,P ;[r0] ← [P]

 LDR r1,Q ;[r1] ← [Q]

 SUBS r2,r0,r1 ;[r2] ← [r0] - [r1]

 BPL THEN ;IF [r2] ≥ 0 [PC] ← THEN

ELSE ADD r0,r0,#20 ;[r0] ← [r0] + 20

 B EXIT ;[PC] ← EXIT

THEN ADD r0,r0,#5 ;[r0] ← [r0] + 5

EXIT STR r0,X ;[X] ← [r0]

This sequence of assembly-language instructions can be expressed in

RTL notation:

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

28

Case 1: P = 12, Q = 9, and the branch is taken

Case 2: P = 12, Q = 14, and the branch is not taken

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

29

Consider the code needed to calculate

1 + 2 + 3 + 4 + … + 20

 LDR r0,#1 ;Put 1 in register r0 (the counter)

 LDR r1,#0 ;Put 0 in register r1 (the sum)

Next ADD r1,r1,r0 ;REPEAT: Add current count to sum

 ADD r0,r0,#1 ; Add 1 to the counter

 CMP r0,#21 ; Have we added all 20 numbers?

 BNE Next ;UNTIL we have made 20 iterations

 STOP ;If we have THEN stop

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

30

Figure 3.8a illustrates an instruction that implements ADD A,B,C

where A, B, and C are 32-bit memory addresses. The width is 112 bits

which is unfeasibly large.

Figure 3.8b illustrates the format of a hypothetical RISC processor with

a register-to-register format that can execute ADD R1,R2,R3 where the

registers are chosen from 32 possible registers (requiring a 5-bit

register address field).

Such a format is used by most 32-bit RISC processors with small

variations.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

GENERAL-PURPOSE REGISTERS

31

Registers are usually the same width as the fundamental word of

a computer (but not always so).

The ARM processor has 32-bit registers, a 32-bit program counter,

and its basic wordlength is 32 bits wide.

Some computers have dedicated registers – different registers

have different functions.

Some computers have entirely general-purpose registers (they all

behave identically).

The ARM has general-purpose regisres but two have special

hardware-defined functions and cannot be used by the

programmer for general-purpose data processing.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

32

Data Extension

Sometimes registers hold data values smaller than their actual length; for

example a 16-but halfword in a 32-bit word register.

What happens to the other bits?

This is processor dependent. Some set the unused bits to 0, some leave the

unused bits unchanged, and some sigh-extend the 16-bit word to 32-bits.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

ADDRESSING MODES

33

There are three fundamental addressing modes

• Literal or immediate (the actual value is part of the instruction)

• Direct or absolute (the instruction provides the memory address of the

operand)

• Register indirect or pointer based or indexed (a register contains the

address of the operand)

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

34

Instruction types

Memory-to-register The source operand is in memory and the

destination operand is in a register

Register-to-memory The source operand is in a register and the

destination operand is in memory

Register-to-register Both operands are in registers.

CISC processors like the Intel IA32 family and

Motorola/Freescale 68K family allow memory-to-register and

register-to memory data-processing operations.

RISC processors like the ARM and MIPS allow only register-to-

register data-processing operations. RISC processor have a

special LAD and a special STORE instruction to transfer data

between memory and a register.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

35

Program Counter Relative Addressing

Register indirect addressing allows you to specify the location of an

operand with respect to a register.

LDR r0,[r1, #16] specifies that the operand is 16 bytes on from r1.

Suppose that we use r15, the PC, to generate an address and write
LDR r0,[PC,#16].

The operand is 16 bytes on from the PC or 8 + 16=24 bytes from the

current instruction (The ARM’s PC is always 8 bytes on from the current

instruction).

Program counter relative addressing allows you to generate the address of

an operand with respect to the program accessing it.

If you relocate the program and its data elsewhere in memory, the relative

offset does not change.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

OP-CODES AND INSTRUCTIONS

36

Computers can have three-address, two-address, one-address, and zero-

address instructions.

CISC processors typically have two address instructions where one

address is memory and one a register.

RISC processors typically have a three-address data processing

instruction where the three operand addresses are registers. They also

have two dedicated two-address instructions, LOAD and STORE.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

THE INSTRUCTION SET ARCHITECTURE

37

Sample address formats

Operands Instruction Effect

Three ADD P,Q,R Add Q to R and put the result in P

Two ADD P,Q Add Q to P and put the result in P

One ADD P Add P to accumulator and put result in the acc

Zero ADD Pop top two items off the stack, add them

 and push result

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

38

Two Address Machines

A CISC has a two-address instruction format. You can execute Q P + Q.

One operand appears twice, first as a source and then as a destination.

The price of a two-operand instruction format is the destruction by

overwriting of one of the source operands.

Typically, the operands are either two registers or one register and a

memory location; for example, the 68K ADD instruction can be written:

Instruction RTL definition Mode

ADD D0,D1 [D1] [D1] + [D0] Register-to-register

ADD P,D2 [D2] [D2] + [P] Memory-to-register

ADD D7,P [P] [P] + [D7] Register-to-memory

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

39

One Address Machines

A one address machine specifies just one operand in the instruction.

The second operand is a fixed register called an accumulator that doesn’t

have to be specified.

For example, the operation one-address instruction ADD P means

[A] [A] + [P]. The notation [A] indicates the contents of the accumulator.

The simple operation R = P + Q can be implemented by the following

fragment of 8-bit code from a first-generation 6800 8-bit processor.

LDA P ;load accumulator with P

ADD Q ;add Q to accumulator

STA R ;store accumulator in R

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

THE ARM REGISTERS

40

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

41

Zero Address Machines

A zero address machine uses instructions that do not have an address at

all.

A zero address machine operates on data that is at the top of a stack

zero address machines are normally referred to as stack machines.

The code used to evaluate the expression Z = (A + B)*(C – D) might be

written as:

PUSH A Push A on stack

PUSH B Push B on stack

ADD Add top two items and push A+B on the stack

PUSH C Push C on the stack

PUSH D Push D on the stack

SUB Subtract top two items and push C – D on the stack

MUL Multiply top two items on stack (C - D), (A + B) push result

POP Z Pull the top item off the stack (the result)

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

42

Zero Address Machines

Stack machines can handle Boolean logic. Consider if (A < B) or (C = D).

This can be expressed as:

PUSH A Push A on stack

PUSH B Push B on stack

LT Pull A and B and perform comparison. Push true or false

PUSH C Push C

PUSH D Push D

EQ Push C and D and test for equality. Push true or false

OR Pull top two Boolean values off stack. Perform OR push result.

The Boolean value on the stack can be used with a branch on true or a

branch on false command as in the case of any other computer.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

43

One-and-a-half address machines

A CISC machine is called a one-and-a-half address machine because one

operand is an address in memory and the other is a register. This 68K

code demonstrates the evaluation of the expression (A+B)(C-D).

 MOVE A,D0 ;Load A from memory into register D0

 ADD B,D0 ;Add B from memory into register D0

 MOVE C,D1 ;Load C from memory into register D1

 SUB D,D1 ;Subtract D from memory from register D1

 MULU D0,D1 ;Multiply register D1 by D0

 MOVE D1,X ;Store register D1 in memory location X

Compare with the following code of an accumulator-based machine:

 LDA A ;Load A from memory into the accumulator

 ADD B ;Add B from memory into the accumulator

 STA P ;Store the accumulator in memory location P

 LDA C ;Load C from memory into the accumulator

 SUB D ;Subtract D from memory from the accumulator

 MUL P ;Multiply the accumulator by P from memory

 STA X ;Store the accumulator in memory location X

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

ARM REGISTER SET

44

14 general-purpose registers r0 to r13.

r14 stores a subroutine return address

r15 contains the program counter.

Sixteen registers require a 4-bit address which saves three bits per

instruction over RISC processors with 32-register architectures (5-bit

address).

Register r13 is reserved for use by the programmer as the stack pointer.

The ARM’s current program status register (CPSR) contains Z (zero), N

(negative), C (carry) and V (overflow) flag bits

ARM processors have a rich instruction set

Consider ADD r1,r2,r3,LSL r4 and MLA r1,r2,r3,r4.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

ARM REGISTER SET

45

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

TYPICAL ARM INSTRUCTIONS

46

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

ARM ASSEMBLY LANGUAGE

47

 ARM instructions are written in the form

Label Op-code operand1, operand2, operand3 ;comment

Consider the following example of a loop.

Test_5 ADD r0,r1,r2 ;calculate TotalTime = Time + NewTime

 SUBS r7,#1 ;Decrement loop counter

 BEQ Test_5 ;IF zero THEN goto Test_5

The Label field is a user-defined label that can be used by other

instructions to refer to that line.

Any text following a semicolon is regarded as a comment field and is

ignored by the assembler.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

48

Suppose we wish to generate the sum of the cubes of numbers from 1 to 10.

We can use the multiply and accumulate instruction;

 MOV r0,#0 ;clear total in r0

 MOV r1,#10 ;FOR i = 1 to 10 (count down)

Next MUL r2,r1,r1 ; square number

 MLA r0,r2,r1,r0 ; cube number and add to total
 SUBS r1,r1,#1 ; decrement counter (set condition flags)

 BNE Next ;END FOR (branch back on count not zero)

This fragment of assembly language is syntactically correct and implements

the appropriate algorithm. It is not yet a program that we can run.

We have to specify where the code goes in memory.

There are two types of statement – executable instructions that are executed

by the computer and assembler directives that tell the assembler something

about the environment.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

49

STRUCTURE OF AN ARM PROGRAM

(CODE WHITE, ASSEMBLER DIRECTIVES RED)

 AREA ARMtest, CODE, READONLY

 ENTRY

 MOV r0,#0 ;clear total in r0

 MOV r1,#10 ;FOR i = 1 to 10

Next MUL r2,r1,r1 ; square number

 MLA r0,r2,r1,r0 ; cube number and add to total

 SUBS r1,r1,#1 ; decrement loop count

 BNE Next ;END FOR

 END

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

50

Snapshot of the Display of an ARM Development System

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

51

This is the Disassembly Window that shows memory contents as

both hexadecimal values and code.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

52

Executing a program

Click on this icon to execute

an instruction.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

53

Executing a program

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

54

The following slide demonstrates some assembly language directives

(in red). These directives are:

EQU equate Equate a name to a value

DCD define constant Set up a 32-bit constant in memory

DCW define constant Set up a 16-bit constant in memory

DCB define constant Set up an 8-bit constant in memory

END The physical end of the code

ENTRY Starting point for execution

AREA Names the region of code or data

ALIGN Ensures that instructions are correctly

 aligned on 32-bit boundaries

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

55

 AREA Directives, CODE, READONLY

 ENTRY

 MOV r6,#XX ;load r6 with 5 (i.e., XX)

 LDR r7,P1 ;load r7 with the contents of location P1

 ADD r5,r6,r7 ;just a dummy instruction

 MOV r0, #0x18 ;angel_SWIreason_ReportException

 LDR r1, =0x20026 ;ADP_Stopped_ApplicationExit

 SVC #0x123456 ;ARM software interrupt

XX EQU 5 ;equate XX to 5

P1 DCD 0x12345678 ;store hex 32-bit value 1345678

P3 DCB 25 ;store the byte 25 in memory

YY DCB 'A‘ ;store byte whose ASCII character is A in memory

Tx2 DCW 12342 ;store the 16-bit value 12342 in memory

 ALIGN ;ensure code is on a 32-bit word boundary

Strg1 = "Hello"

Strg2 = "X2", &0C, &0A

Z3 DCW 0xABCD

 END

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

56

PSEUDOINSTRUCTIONS

A pseudo instruction is an operation that the programmer can use when writing

code. The actual instruction does not exist. The assembler, generates suitable

code to carry out the same action.

For example, you can’t write MOV r0,#0x1234567 to load register r0 with the

32-bit value 0x01234567 because an instruction is only 32 bits long in total.

The pseudoinstruction ADR rdestination,label, loads the 32-bit address of the line

‘label’ into a register.

The following fragment demonstrates the use of the ADR pseudoinstruction.

 ADR r1,MyArray ;set up r1 to point to MyArray

 …

 LDR r3,[r1] ;read an element using the pointer

MyArray DCD 0x12345678 ;the address of this data will be loaded

ADR r1,MyArray loads register r1 with the 32-bit address of MyArray using the

appropriate code generated by the assembler. The programmer does not have to

know how the assembler generates suitable code to implement the ADR.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

57

Another useful pseudoinstruction is LDR rd, = value. The compiler

generates the code that allows register rd to be loaded with the stated

value; for example,

 LDR r0, = 0x12345678

loads r0 with 1234567816.

The assembler uses a MOV or MVN instruction if it can, or it uses an

LDR r0,[pc,#offset] instruction to access the appropriate constant

1234567816 that is stored in a so-called literal pool or constant pool

somewhere in memory.

All this is done automatically.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

58

Executing Code in a Development System

This is the snapshot of the development system. It shows the code

in source form and the contents of registers.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

59

Snapshot of a Debugger showing memory locations

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

60

Data-Processing Instructions

Addition ADD

Subtraction SUB

Negation NEG

Comparison CMP

Multiplication MUL

Shifting LSL, LSR, ASL, ASR, ROL, ROR

Note: The ARM does not have an explicit shift instruction but

combines a shift with other operations.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

61

As well as a simple ADD instruction that adds two 32-bit values,

ARM has an ADC (add with carry) that adds to registers together

with the carry bit. This allows extended precision arithmetic as

Figure 3.21 demonstrates.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

62

COMPARISON

 CMP Q,P which evaluates Q - P but does not store the result;

 CMP r1,r2 ;is r1 = r2?

 BEQ DoThis ;if equal then goto DoThis

 ADD r1,r1,#1 ;else add 1 to r1

 B Next ;jump past the then part

 .

DoThis SUB r1,r1,#1 ;subtract 1 from r1

Next ... ;both forks end up here

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

63

The multiply instruction, MUL Rd,Rm,Rs, calculates the product of

two 32-bit signed integers in 32-bit registers Rm and Rs, then deposits

the result in 32-bit register Rd, which stores the 32 lower-order bits of

the 64-bit product.

 MOV r0,#121 ;load r0 with 121

 MOV r1,#96 ;load r1 with 96

 MUL r2,r0,r1 ;r2 = r0 x r1

you can’t use the same register to specify both the destination Rd and

the operand Rm, because ARM’s implementation uses Rd as a

temporary register during multiplication. This is a feature of the ARM

processor.

ARM has a multiply and accumulate instruction, MLA, that performs

a multiplication and adds the product to a running total. MLA

instruction has a four-operand form: MLA Rd,Rm,Rs,Rn, whose RTL

definition is [Rd] = [Rm] x [Rs] + [Rn]. A 32-bit by 32-bit

multiplication is truncated to the lower-order 32 bits.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

64

ARM’s multiply and accumulate supports the calculation of an inner

product by performing one multiplication and addition per instruction. The

inner product is used in multimedia applications; for example, if vector a consists

of n components a1, a2, … an and vector b consists of the n components b1, b2, ...

,bn, then the inner product of a and b is the scalar value

s = a · b = a1·b1 + a2·b2 + … + an·bn.

 MOV r4,#n ;r4 is the loop counter

 MOV r3,#0 ;clear the inner product

 ADR r5,Vector1 ;r5 points to vector 1

 ADR r6,Vector2 ;r6 points to vector 2

Loop LDR r0,[r5],#4 ;REPEAT read a component of A and

 ;update the pointer

 LDR r1,[r6],#4 ; get the second element

 MLA r3,r0,r1,r3 ; add new product term to the total

 ;(r3 = r3 + r0·r1)

 SUBS r4,r4,#1 ; decrement the loop counter

 ; (and remember to set the CCR)

 BNE Loop ;UNTIL all done

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

65

BITWISE LOGICAL OPERATIONS

Instruction Operation Final value in r2

AND r2,r1,r0 11001010.00001111 00001010

OR r2,r1,r0 11001010+00001111 11001111

NOT r2,r1 11001010 00110101

EOR r2,r1,r0 1100101000001111 11000101

Although ARM lacks an explicit NOT instruction, you can perform a

NOT by using an EOR with the second operand equal to FFFFFFFF16

(32 1’s in a register) because the value of x 1 is NOT x. A NOT

operation can also be implemented with the move negated instruction

MVN, that copies the logical complement of a value into a register.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

66

Suppose that register r0 contains the 8 bits bbbbbbxx, register r1

contains the bits bbbyyybb and register r2 contains the bits zzzbbbbb,

where x, y, and z represent the bits of desired fields and the b’s are

unwanted bits. We wish to pack these bits to get the final value zzzyyyxx.

We can achieve this by:

 ANDr0,r0,#2_00000011 ;Mask r0 to two bits xx

 ANDr1,r1,#2_00011100 ;Mask r1 to three bits yyy

 ANDr2,r2,#2_11100000 ;Mask r2 to three bits zzz

 OR r0,r0,r1 ;Merge r1 and r0 to get 000yyyxx

 OR r0,r0,r2 ;Merge r2 and r0 to get zzzyyyxx

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

67

Shift operations move bits one or more places left or right.

Logical shifts insert a 0 in the vacated position.

Examples of logical shifts

Source string Direction Number of shifts Destination string

0110011111010111 Left 1 1100111110101110

0110011111010111 Left 2 1001111101011100

0110011111010111 Left 3 0011111010111000

0110011111010111 Right 1 0011001111101011

0110011111010111 Right 2 0001100111110101

0110011111010111 Right 3 0000110011111010

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

68

Arithmetic shifts replicate the sign-bit during a right shift

Circular shifts treat the register as a ring and the bit shifted out of one

end is shifted in the other end.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

69

The rotate through carry instruction (sometimes called extended

shift) included the carry register in the shift path.

The carry bit is shifted into the bit of the word vacated, and the bit

of the word shifted out is shifted into the carry.

In eight bits, if the carry C = 1 and the word to be shifted is

01101110, a rotate left through carry would give

11011101 and carry = 0

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

70

IMPLEMENTING A SHIFT OPERATION ON THE ARM

ARM combines shifting with other data processing operations, because the

second operand can be shifted before it is used. Consider:

ADD r0,r1,r2, LSL #1

A logical shift left is applied to the contents of r2 before they are added to the

contents of r1. This operation is equivalent to

 [r0] [r1] + [r2] x 2.

To apply a shift operation to a register without any other data processing, you

can a move

MOV r3,r3 LSL #1.

You can perform dynamic shifts. Consider MOV r4,r3, LSL r1, which moves the

contents of r3 left by the value in r1 before putting the result in r4.

Suppose a number in r0 is of the form 0.00000010101111… and you want to

normalize it to 0.101… If register r1 contains the exponent, we can execute MOV

r0,r0,LSL r1 to perform the normalization operation in a single cycle.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

71

Figure 3.25 illustrates the structure of instructions with shifted

operands and shows how the various fields control the shifter and

the ALU.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

72

ARM implements only the following five shifts (the programmer can

synthesize the rest).

LSL logical shift left

LSR logical shift right

ASR arithmetic shift right

ROR rotate right

RRX rotate right through carry (one shift)

Other shift operations have to be synthesized by the programmer.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

73

Figure 3.26 illustrates the structure of the ARM’s data processing

instructions and demonstrates how bit 25 is used to control the

nature of the second source operand.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

74

UNCONDITIONAL BRANCH

ARM’s unconditional branch instruction has the form B target, where

target denotes the branch target address (BTA, the address of the next

instruction to be executed). The following fragment of code

demonstrates how the unconditional branch is used.

.. do this Some code

.. then that Some other code

 B Next Now skip past next instructions

.. …the code being skipped past

.. …the code being skipped past

Next .. Target address for the branch

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

75

CONDITIONAL BRANCH

IF (X == Y)

 THEN Y = Y + 1;

 ELSE Y = Y + 2

A test is performed and one of two courses of action is carried out

depending on the outcome. We can translate this as:

 CMP r1,r2 ; r1 contains y and r2 contains x: compare them

 BNE Plus2 ;if not equal then branch to the else part

 ADD r1,r1,#1 ;if equal fall through to here and add one to y

 B leave ;now skip past the else part

Plus2 ADD r1,r1,#2 ;ELSE part add 2 to y

leave … ;continue from here

The conditional branch instruction tests flag bits in the processor’s

condition code register, then takes the branch if the tested condition is

true. There are eight possible conditional branches based on the state of

a single bit (four that branch on true and four that branch on false).

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

76

ARM’S BRANCHES

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

77

BRANCHING AND LOOP CONSTRUCTS

Nothing illustrates the concept of flow control better than the classic

loop constructs that are at the core of so-called structured programming.

The following demonstrate the structure of the FOR, WHILE and

UNTIL loops.

The FOR loop
 MOV r0,#10 ;set up the loop counter

Loop code ... ;body of the loop

 SUBS r0,r0,#1 ;decrement loop counter, set flags

 BNE Loop ;continue until count zero

 Post loop ... ;fall through on zero count

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

78

CONDITIONAL EXECUTION

One of ARM’s most unusual features is that each instruction is

conditionally executed. We can associate an instruction with a

logical condition.

If the stated condition is true, the instruction is executed.

Otherwise it is bypassed (annulled or squashed).

The assembly language programmer indicates the conditional

execution mode by appending the appropriate condition to a

mnemonic; for example,

ADDEQ r1,r2,r3

specifies that the addition is performed only if the Z-bit is set

because a previous result was zero. The RTL form of this operation

is

IF Z = 1 THEN [r1] [r2] + [r3]

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

79

CONDITIONAL EXECUTION

There is nothing to stop you combining conditional execution and

shifting because the branch and shift fields of an instruction are

independent. You can write

 ADDCC r1,r2,r3, LSL r4

which is interpreted as IF C = 0 THEN [r1] [r2] + [r3] x 2[r4]

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

80

ARM’s conditional execution mode makes it easy to implement

conditional operations in a high-level language.

Consider the following fragment of C code.

if (P == Q) X = P – Y ;

If we assume that r1 contains P, r2 contains Q, r3 contains X, and

r4 contains Y, then we can write

 CMP r1,r2 ;compare P == Q

 SUBEQ r3,r1,r4 ;if (P == Q) then r3 = r1 - r4

Notice how this operation is implemented without using a branch

by squashing instructions we don’t wish to execute rather than

branching round them. In this case the subtraction is squashed if

the comparison is false

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

81

Now consider a more complicated example of a C construct with a

compound predicate:

if ((a == b) && (c == d)) e++;

 CMP r0,r1 ;compare a == b

 CMPEQ r2,r3 ;if a == b then test c == d

 ADDEQ r4,r4,#1 ;if a == b AND c == d THEN increment e

The first line, CMP r0,r1, compares a and b.

The next line, CMPEQ r2,r3, executes a conditional comparison

only if the result of the first line was true (i.e., a == b).

The third line, ADDEQ r4,r4,#1, is executed only if the previous

line was true (i.e., c == d) to implement the e++.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

82

You can also handle some testing with multiple conditions.

Consider:

if (a == b) e = e + 4;

if (a < b) e = e + 7;

if (a > b) e = e + 12;

We can use conditional execution to implement this as

 CMP r0,r1 ;compare a == b

 ADDEQ r4,r4,#4 ;if a == b then e = e + 4

 ADDLE r4,r4,#7 ;if a < b then e = e + 7

 ADDGT r4,r4,#12 ;if a > b then e = e + 12

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

83

ADDRESSING MODES

Mnemonic RTL form Description

ADD r0,r1,#Q [r0] ← [r1] + Q Literal: Add the integer Q to

contents of register r1

LDR r0,Mem [r0] ← [Mem] Absolute: Load contents of memory

location Mem into register r0. This

addressing mode is not supported

by ARM but is supported by all

CISC processors

LDR r0,[r1] [r0] ← [[r2]] Register Indirect: Load r0 with the

contents of the memory location

pointed at by r2

The ARM lacks a simple memory direct (i.e., absolute) addressing

mode and does not have an LDR r0,address instruction that

implements direct addressing to load the contents of a memory

location denoted by address into a register.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

84

Concepts of Addressing Modes

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

85

Handling Literals

ARM is able to use literal operands.

ADD r0,r1,#7 adds 7 to r1 and puts the result in r0.

MOV r3,#25 moves 25 into r3.

Literals are 12 bit values in the range 0 to 4095.

Literals can be scaled by a power of 2 (an unusual feature of the ARM).

Figure 3.28 illustrate the format of ARM’s instructions with a literal

operand.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

86

Register Indirect Addressing

In register indirect addressing, the location of an operand is given by

the contents of a register.

All computers support some form of register indirect addressing.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

87

In register indirect addressing, the location of an operand is given by

the contents of a register. All computers support some form of register

indirect addressing. This is also called:

• Indexed

• Pointer-based

The ARM indicates register indirect addressing by means of square

brackets; for example,

LDR r1,[r0] ;load r1 with the contents of the memory location pointed

;at by r0

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

88

Figure 3.31 shows the execution of

LDR r1,[r0] ;load r1 with the contents of the memory location pointed

;at by r0

Consider what happens if we next execute

ADD r0,r0,#4 ;Add 4 to the contents of register r4

 :(i.e., increment the pointer by one word)

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

89

Figure 3.32 demonstrates the effect of incrementing the pointer register.

It now points to the next location in memory.

This allows us to use the same instruction to access a sequence of

memory locations; for example, a list, matrix, vector, array, or table.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

90

Register Indirect Addressing with an Offset

ARM supports a memory-addressing mode where the effective address of

an operand is computed by adding the contents of a register to a literal

offset coded into the load/store instruction.

This addressing mode is often called base plus displacement addressing.

Figure 3.33 illustrates the instruction LDR r0,[r1,#4]. The effective

address is the sum of the contents of the pointer register r1 plus offset 4;

that is, the operand is 4 bytes on from the address specified by the pointer.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

91

The following fragment of code demonstrates the use of offsets to

implement array access. Because the offset is a constant, it cannot be

changed at runtime.

Sun EQU 0 ;offsets for days of the week

Mon EQU 4

Tue EQU 8

.

Sat EQU 24

 ADR r0, week ;r0 points to array week

 LDR r2,[r0,#Tue] ;read the data for Tuesday into r2

Week DCD ;data for day 1 (Sunday)

 DCD ;data for day 2 (Monday)

 DCD ;data for day 3 (Tuesday)

 DCD ;data for day 4 (Wednesday)

 DCD ;data for day 5 (Thursday)

 DCD ;data for day 6 (Friday)

 DCD ;data for day 7 (Saturday)

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

92

Snapshot of

the

program

using

register

indirect

addressing

with an

offset.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

93

Register Indirect Addressing with Base and

Index Registers

You can specify the offset as a second register so that you can use a

dynamic offset that can be modified at runtime (See Figure 3.35).

LDR r2,[r0,r1] ;[r2] ← [[r0] + [r1]] load r2 with the location

 ;pointed at by r0 plus r1

LDR r2,[r0,r1,LSL #2] ;[r2] ← [[r0] + 4 x [r1]] Scale r1 by 4

In the second example, register r1 is scaled by 4. This allows you to use

a scaled offset when dealing with arrays.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

94

Pre-indexing (register indirect with a constant/literal)

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

95

AUTOINDEXING PRE-INDEXED ADDRESSING MODE

Elements in an array or similar data structure are frequently accessed

sequentially. Auto-indexing addressing modes in which the pointer is

automatically adjusted to point at the next element before or after it is

used have been implemented.

ARM implements two auto-indexing modes by adding the offset to the

base (i.e., pointer register).

ARM’s autoindexing pre-indexed addressing mode is indicated by

appending the suffix “!” to the effective address. Consider the following

ARM instruction:

 LDR r0,[r1,#8]! ;load r0 with the word pointed at by register r1

 ; plus 8 then update the pointer by adding 8 to r1

The RTL definition of this instruction is given by

[r0] [[r1] + 8] Access the memory 8 bytes beyond the base register r1

[r1] [r1] + 8 Update the pointer (base register) by adding the offset

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

96

EXAMPLE OF PRE-INDEXED ADDRESSING MODE

This auto-indexing mode does not incur additional execution time, because

it is performed in parallel with memory access.

Consider this example of the addition of two arrays.

Len EQU 8 ;let’s make the arrays 8 words long

 ADR r0,A - 4 ;register r0 points at array A

 ADR r1,B - 4 ;register r1 points at array B

 ADR r2,C - 4 ;register r2 points at array C

 MOV r5,#Len ;use register r5 as a loop counter

Loop LDR r3,[r0,#4]! ;get element of A

 LDR r4,[r1,#4]! ;get element of B

 ADD r3,r3,r4 ;add two elements

 STR r3,[r2,#4]! ;store the sum in C

 SUBS r5,r5,#1 ;test for end of loop

 BNE Loop ;repeat until all done

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

97

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

98

AUTOINDEXING POST-INDEXING MODE

Autoindexing post-indexing addressing first accesses the operand at the

location pointed to by the base register, then increments the base register.

LDR r0,[r1],#8 ;load r0 with the word pointed at by r1

 ;now do the post-indexing by adding 8 to r1

Post-indexing is denoted by placing the offset outside the square. The RTL

definition of this instruction is:

 [r0] [[r1]] Access the memory address in base register r1

 [r1] [r1] + 8 Update pointer (base register) by adding offset

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

99

AUTOINDEXING POST-INDEXING MODE

Autoindexing post-indexing addressing first accesses the operand at the

location

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

100

Subroutine Call and Return

The instruction BSR Proc_A calls subroutine Proc_A.

The processor saves the address of the next instruction to be executed in a

safe place, and loads the program counter with the address of the first

instruction in the subroutine.

At the end of the subroutine a return from subroutine instruction, RTS,

causes the processor to return to the point immediately following the

subroutine call.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

101

ARM SUPPORT FOR SUBROUTINES

ARM processors do not provide a fully automatic subroutine call/return

mechanism like CISC processors.

ARM’s branch with link instruction, BL, automatically saves the return address in

register r14.

The branch instruction (Figure 3.41) has an 8-bit op-code with a 24-bit signed

program counter relative offset. The 24-bit offset is shifted left twice to convert the

word-offset address to a byte address, sign-extended to 32 bits, added to the

program counter.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

102

ARM SUPPORT FOR SUBROUTINES

The branch with link instruction behaves like the corresponding branch

instruction but also copies the return address (i.e., address of the next

instruction to be executed following a return) into the link register r14.

If you execute:

 BL Sub_A ;branch to “Sub_A” with link

 ;save return address in r14

the ARM executes a branch to the target address specified by the label

Sub_A.

It also copies the program counter held in register r15 into the link

register r14 to preserve the return address.

At the end of the subroutine you return by transferring the return

address in r14 to the program counter by:

 MOV pc,lr ;we can also write this MOV r15,r14

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

103

Suppose that you want to evaluate if x > 0 then x = 16x + 1 else x = 32x

several times in a program. Assuming that x is in r0, we can write :

Func1 CMP r0,#0 ;test for x > 0

 MOVGT r0,r0, LSL #4 ;if x > 0 x = 16x

 ADDGT r0,r0,#1 ;if x > 0 then x = 16x + 1

 MOVLT r0,r0, LSL #5 ;ELSE if x < 0 THEN x = 32x

 MOV pc,lr :return by restoring saved PC

We’ve made use of conditional execution here. Consider the following

application of the subroutine.

 LDR r0,[r4] ; get P

 BL Func1 ; P = (if P > 0 then 16P + 1 else 32P) First call

 STR r0,[r4] ; save P

.

 LDR r0,[r5,#20] ; get Q

 BL Func1 ; Q = (if Q > 0 then 16Q + 1 else 32Q) Second call

 STR r0,[r5,#20] ; save P

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

104

We used dummy data for the calls; first with P = 3 and then with Q = -1

(FFFFFFFF16). At the end of execution memory locations P and Q contain

the expected values of 49 (3116) and -32 (FFFFFFE016). These two values are

stored after the data at addresses 0x4C and 0x50, respectively. We used

indexed addressing with displacement to store the results in memory e.g.,

STR r4,[r0,#8].

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

105

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

106

THE STACK

The stack is a data structure, a last in first out queue, LIFO, in which

items enter at one end and leave in the reverse order.

Stacks in microprocessors are implemented by using a stack pointer to

point to the top of the stack in memory.

As items are added to the stack (pushed), the stack pointer is moved

up, and as items are removed from the stack (pulled or popped) the

stack pointer is moved down.

Figure 3.45 demonstrates four ways of constructing a stack. The two

design decisions you have to make when implementing a stack are

whether the stack grows up toward low memory as items are pushed or

whether the stack grows down toward high memory as items are

pushed.

TOS means top of stack and indicates the next item on the stack.

Figure 3.45 shows the stack being used to store a return address after a

subroutine call.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

107

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

108

An important application of the stack is to save return addresses

after a subroutine call.

CISC processors maintain the stack automatically. RISC

processors force the programmer to maintain the stack.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

109

SUBROUTINE CALL AND RETURN

A subroutine call can be implemented by pushing the return address on

the stack and then jumping to the branch target address. Typically, this

operation is implemented by JSR target or BSR target by CISC

processors.

Because the ARM does not implement this operation, you could

synthesize this instruction by:

 ;assume that the stack grows towards low addresses and

 ;the SP points ;at the next item on the stack.

 SUB r13,r13,#4 ;pre-decrement the stack pointer

 STR r15,[r13]; ;push the return address on the stack

 B Target ;jump to the target address

 ... ;return here

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

110

Once the code or body of the subroutine has been executed, a return from

subroutine instruction, RTS, is executed and the program counter

restored to the point it was at after the BSR Proc_A instruction had been

fetched. The effect of RTS instruction is

 RTS: [PC] [[SP]] ;Copy the return address on the stack to the PC

 [SP] [SP] + 4 ;Adjust the stack pointer

In Figure 3.46 the stack moves up by 4 because each address occupies

four bytes. Because the ARM does not support a stack-based subroutine

return mechanism, you would have to write:

 LDR r12,[r13],#+4 ; get saved PC and post-increment stack pointer

 SUB r15,[r12],#4 ;fix PC and load into r15 to return

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

111

ARM subroutine call and return

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

112

Nested subroutines

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

113

Example of nested subroutine

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

114

LEAF ROUTINES

A leaf routine doesn’t call another routine; it’s at the end of the tree. If you

call a leaf routine with BL, the return address is saved in link register

r14. A return to the calling point is made with a MOV pc,lr.

If the routine is not a leaf routine, you cannot call another routine without

first saving the link register.

 BL XYZ ;call a simple leaf routine

 .

 BL XYZ1 ;call a routine that calls a nested routine

 .

XYZ . . . ;code (this is the leaf routine)

 .

 MOV pc,lr ;copy link register into PC and return

XYZ1 STMFD sp!,{r0-r4,lr} ;save working registers and link register

 .

 BL XYZ ;call XZY – overwrites the old link register

 .

 LDMFD sp!,{r0-r4,pc} ;restore registers and force a return

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

115

Subroutine XYZ is a leaf subroutine that does not call a nested

subroutine and, therefore, we don’t have to worry about the link

register, r14, and we can return by executing MOV pc,lr.

Subroutine XYZ1 contains a call to a nested subroutine and we have

to save the link register in order to return from XYZ1.

The simplest way of saving the link register is to push it on the

stack. In this case we use a store multiple registers instruction and

also save registers r0 to r4.

When return from XYZ1, we restore the registers and load the saved

r14 (the return address in the link register) into the program

counter.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

116

DATA ORGANIZATION AND ENDIANISM

Figure 3.50 shows how bytes in memory are numbered from 0 to 2n – 1.

Word numbering is universal and the first word in memory word 0 and the

last word, 2n – 1.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

117

Bit numbering can vary between processors. Figure 3.51a shows right-to-

left numbering, with the least-significant digit on the right.

Microprocessors (ARM, Intel) number the bits of a word from the least-

significant bit (lsb) which is bit 0, to the most-significant bit (e.g., msb)

which is bit m – 1, in the same way.

Some microprocessors, (PowerPC) reverse this scheme, as illustrated in

Figure 3.51b.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

118

As well as the way in which we organize the bits of a byte, we have to

consider the way in which we organize the individual bytes of a word.

Figure 3.52 demonstrates that we can number the bytes of a word in two

ways. We can either put the most-significant byte at the highest byte

address of the word or we can put the most-significant byte at the lowest

address in a word.

The ordering is called big endian if the most-significant element goes in at

the lowest address, and little endian if it goes in at the highest address.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

119

BLOCK MOVE INSTRUCTIONS

The following conventional ARM code demonstrates how to load four

registers from memory.

 ADR r0,DataToGo ; load r0 with the address of the data area

 LDR r1,[r0],#4 ; load r1 with the word pointed at by r0

 ; and update pointer

 LDR r2,[r0],#4 ; load r2 with word pointed at by r0

 ; and update the pointer

 LDR r3,[r0],#4 ; and so forth for remaining registers r3 and r5…

 LDR r5,[r0],#4

ARM has a block move to memory instruction, STM, and a block move

from memory, LDM that can copy groups of registers to and from

memory. Both these block move instructions take a suffix to describe how

the data is accessed.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

120

Conceptually, a block move is easy to understand, because it’s simply

a ‘copy the contents of these registers to memory’ or vice versa.

Let’s start by moving the contents of registers r1, r2, r3, and r5, into

sequential memory locations with

STMIA r0!,{r1-r3, r5} ;note the syntax of this and all block

This instruction copies registers r1 to r3, and r5, into sequential

memory locations, using r0 as a pointer with auto-indexing

(indicated by the ! suffix).

The suffix IA indicates that index register r0 is incremented after

each transfer, with data transfer in order of increasing addresses.

Although ARM’s block mode instructions have several variations,

ARM always stores the lowest numbered register at the lowest

address, followed by the next lowest numbered register at the next

higher address, and so on (e.g., r1 then r2, r3, and r5 in the

preceding example).

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

121

Executing STMIA r0!,{r1-r3, r5}

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

122

BLOCK MOVES AND STACK OPERATIONS

ARM’s block move instruction is versatile because it supports four

possible stack modes. The differences among these modes are the

direction in which the stack grows (up or ascending and down or

descending) and whether the stack pointer points at the item currently

at the top of the stack or the next free item on the stack. CISC processors

with hardware stack support generally provide only one fixed stack

mode. The ARM’s literature uses four terms to describe stacks:

1. DF descending full Figure 3.52a

2. AF ascending full Figure 3.52b

3. DE descending empty Figure 3.52c

4. AE ascending empty Figure 3.52d

ARM uses the terms ascending and descending to describe the growth of

the stack toward higher or lowers addresses, respectively and NOT

whether it grows up or down on the page.

A stack is described as full if the stack pointer points to the top element

of the stack. If the stack pointer points to the next free element above

the top of the stack, then the stack is called empty.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

123

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

124

ARM has two ways of describing stacks, which can be a little confusing

at first. A stack operation can by described either by what it does or how

it does it.

The most popular stack points at the top item on the stack and which

grows towards lower addresses.

This is a full descending stack, FD (the type used in this text).

We can write STMFD sp!,{r0,r1} when pushing r0 and r1 on the stack,

and we can write LDMFD sp!,{r0,r1} when popping r0 and r1 off the

stack.

A full descending stack is implemented by first decrementing the

pointer and then storing data at that address (push data) or by reading

data at the stack address and then incrementing the pointer (pull data).

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

125

APPLICATIONS OF BLOCK MOVE INSTRUCTIONS

One of the most important applications of the ARM’s block move instructions

is in saving registers on entering a subroutine and restoring registers before

returning from a subroutine. Consider the following ARM code:

 BL test ;call test, save return address in r14

 .

test STMFD r13!,{r0-r4,r10} ;subroutine test, save working registers

 . body of code

 .

 LDMFD r13!,{r0-r4,r10} ;subroutine completes, restore the registers

 MOV pc,r14 ;copy the return address in r14 to the PC

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

126

We can reduce the size of this code because the instruction MOV pc,r14 is

redundant.

If you are using a block move to restore registers from the stack, you can

also include the program counter. We can write:

test STMFD r13!,{r0-r4,r10,r14} ;save working registers

 ; and return address in r14

 :

 LDMFD r13!,{r0-r4,r10,r15} ;restore working registers

 ;and put r14 in the PC

At the beginning of the subroutine we push the link register r14

containing the return address onto the stack, and then at the end we pull

the saved registers, including the value of the return address which is

placed in the PC, to effect the return.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1st Edition Clements

127

The block move provides a convenient means of copying data between

memory regions.

In the next example we copy 256 words from Table 1 to Table 2.

The block move instruction allows us to move eight registers at once, as

the following code illustrates:

 ADR r0,Table1 ; r0 points to source (note pseudo-op ADR)

 ADR r1,Table2 ; r1 points to the destination

 MOV r2,#32 ; 32 blocks of 8 = 256 words to move

Loop LDRFD r0!,{r3-r10} ; REPEAT Load 8 registers in r3 to r10

 STRFD r1!,{r3-r10} ; store the registers at their destination

 SUBS r2,r2,#1 ; decrement loop counter

 BNE Loop ; UNTIL all 32 blocks of 8 registers moved

