
Example of A Microprogrammed Computer

The purpose of this example is to demonstrate some of the concepts of microprogramming. We are going to

create a simple 16-bit computer that uses three buses A, B, and C. Bus C receives its input from the ALU and

provides an output to all registers. Buses A and B provide inputs to the ALU from the registers. The following

figure illustrates the CPU’s bus and register structure.

All registers apart from the memory address register are connected to Bus, B but only some registers are

connected to bus C.

The computer has two general-purpose registers R0 and R1, and three instruction registers I0, I1 and I2. The

three instruction registers are an unusual feature of this processor.

The program and data memory has three dedicated registers. There is a memory address register, MAR, and two

memory buffer registers, MBR_read and MBR_write, The difference between the two MBRs is that MBR_read

receives data from memory during a read cycle, and MBR_write provides data to memory in a write cycle. The

use of separate read and write MBRs simplified control and multiplexing arrangements.

A key feature of the ISA (instruction set architecture) of this processor is that all instructions are three words

long and consist of an op-code, an address, and an operand. Both the address and operand are 16 bits wide. This

arrangement solves the problem of operand range (it’s the same as the register width), and addressing range (the

full 16-bit address space is supported). Each instruction is, therefore 48 bits in total and must be read as three

consecutive words. Many instructions will not need all 48 bits and, therefore, the architecture does not use

program space efficiently.

The forms of the instructions supported are given as follows. Note that the destination operand is first (leftmost)

and is in bold font.

Address

Q_Data_in

Memory

Bus B
Bus A

Bus CMAR

MBR_write

PC

IR0

Read

Write

ALU
B

C
A

D_Data_out

MBR_read
Q

Q

D

D

IR1

IR2

D

D

D

Q

Q

Q

D
Q

QD

R0D Q

R1D Q

Register-to-register: MOVE R0,R1, ADD R0,R0,R1

Register-to-memory: MOVE 0x1234,R0 , ADD 0x1234,R0

Memory-to-register: LOAD R0,0x1234, ADD R0,0x1234

Indexed memory: MOVE R0,0x1234(R1)

Literal: ADD R0,#0x1234

The classes of instruction are:

 Data movement

 Program flow control: JMP 0x1234, JMP R0, JMP 0x1234(PC), JMP 0x1234(PC,R0)

 Data processing: Arithmetic, shift, logical, compare

 Conditional branch

The instruction format is:

Bits Function

15 – 13 Predicate

12 – 10 Instruction class

9 – 8 Source register

7 – 6 Destination register

5 – 2 Instruction parameter

1 – 0 Constant 0 to 3

The control signals are:

 Memory: read, write

 Registers: 9 clock, 11 tri-state enables

 ALU: 4 function selects.

The next figure shows the structure of the computer with the bus control and ALU signals.

Address

Q_Data_in

Memory

Bus BBus A Bus C

MAR

MBR_write

PC

IR0

Read

Write

R0

ALU

B

C

A

GMBR_B

GMBR_C

GR0_C

GR0_B

F2

F1

F0

CMBR_write

EMBR_C

EMBR_B

EPC_B

EIR0_B

ER0_B

ER1_B

CMAR

CPC

CIR0

CR0

R1

GR1_C

GR1_B

CR1

CCRZV NC

ER1_C

ER0_C

The function
code selects the
ALU operation

D_Data_out

MBR_read
Q

Q

D

D

CMBR_read

IR1

EIR1_BCIR1

IR2

EIR2_BCIR2

F3

D

D

D

Q

Q

Q

D
Q

Q

Q

Q

D

D

D

GPC_C

EPC_C

The fetch cycle

The fetch phase of each instruction requires the reading of three consecutive words, even if the instruction does

not need all three words. If we assume that the contents of the PC point to the next instruction to be fetched, the

fetch phase can be represented in register transfer language, RTL, as:

[MAR]  [PC] ; Fetch first word (the op-code)

[PC]  [PC] + 1

[MBRread]  [[MAR]]

[IR0]  [MBRread]

[MAR]  [PC] ; Fetch second word (the 16-bit address)

[PC]  [PC] + 1

[MBRread]  [[MAR]]

[IR1]  [MBRread]

[MAR]  [PC] ; Fetch third word (the 16-bit literal)

[PC]  [PC] + 1

[MBRread]  [[MAR]]

[IR2]  [MBRread]

The notation [R0] means the contents of register R0, and the notation [0x1234] means the contents of memory

location 0x1234. The notation [[R0]] means the contents of memory whose address is given by the content’s of

register R0. This is, of course, register-indirect addressing.

Note that the PC is incremented by 1 rather than 2 because this is a 16-bit word-addressed machine. Individual

bytes cannot be accessed.

We can represent these operations in terms of control signals as:

EPC_B, F(pass), CMAR

Read, CMBR_read

EMBR_read_B, F(pass), CIR0

EPC_B, F(pass), CMAR

Read, CMBR_read

EMBR_read_B, F(pass), CIR1

EPC_B, F(pass), CMAR

Read, CMBR_read

EMBR_read_B, F(pass), CIR2

Note that in the above microinstruction sequence, the same three microoperations are repeated three times and

the only difference in each case is which destination instruction register is clocked.

The Execute Phase

Having fetched the instruction as three words, the next step is to execute it. Let’s look at a few operations.

ADD R0,R1 defined as [R0]  [R0] + [R1]

In this case, we only have to copy R0 and R1 to the B and C buses, set the ALU function code to add, and then

clock R0; that is ER0_B, ER1_C, F(add), CR0

Suppose the instruction had been ADD R0,P. In this case, we would have to obtain memory address P from

instruction register IR1 and use it to access memory; that is,

[MAR]  [IR1] ; Copy the address in IR1 to the memory address register

[MBRread]  [[MAR]] ; Read from memory into the MBR

[R0]  [MBRread] + [R0] ; Add the data from memory to R0 and store the result in R0

The sequence of microoperations corresponding to these machine level instruction are:

EIR1_B, F(pass), CMAR

Read, CMBR_read

ER0_B, MBRread_C, F(add), CR0

Let’s consider a more adventurous ADD R0,(R1,0x1234). In this case we are using address register indirect

with indexing. The index value is in register IR2.

The RTL form of the instruction is [R0]  [R0] + [[R1] + [IR2]]. We first have to add together the contents of

pointer register R1 and instruction register IR2 that contains the offset.

EIR2_B, ER1_C, F(add), CIR2 ; This sequence ends with the operand address in IR2

EIR2_B, F(pass), CMAR ; now proceed as before and pass the address to the MAR

Read, CMBR_read ; read the actual operand

ER0_B, EMRread_C, F(add), CR0 ; and add it to R0

Literal Operations

Finally, consider an operation with a literal. The instruction ADD R0,0x1234 is represented in RTL by

[R0]  0x1234.

Implementing this instruction couldn’t be easier, because it is the same as adding two registers, except that one

register is instruction register IR2. That is, is ER0_C, EIR2_B, F(add), CR0

Store Literal

Now consider a store literal indexed in memory that uses two constants. In this case, we are going to load a 16-

bit constant onto 16-bit memory with STORE (0x1234,R0),0x5678. The RTL version is

[[R0] + 0x1234]  0x5678. Here we use both instruction registers IR1 and IR2 that contain the address and the

constant (offset), respectively.

EIR2_B, ER0_C, F(add), CMAR ; This gives us the operand address of R0 + IR2 in the memory address register

EIR1_B, F(pass), CMBR_write ; Put the literal that’s in IR1 in the memory buffer register for writing

Write ; and write to memory

Branch and Jump Operations

Branch and jump operations all lead to the reloading of the program counter. In general (but not exclusively) the

term branch tends to indicate a program-counter relative branch, whereas a jump tends to mean a jump to an

absolute address.

The program counter can be loaded from instruction register IR1 (absolute jump), a data register (register

indirect jump), program counter plus the offset in IR2 (relative address), or even program counter plus register

(program counter register indirect). Moreover, we can make loading the program counter dependent on the

condition codes to provide conditional branches or jumps.

Let’s consider a conditional program counter relative branch of BEQ target which is expressed as

IF Z THEN [PC]  [PC] + [IR2]

The sequence of microoperations for this instruction is remarkably simple.

EIR2_B, EPC_C, F(add), IF Z = 1 THEN CPC ; This generates a new target address and

 ; clocks the PC if the Z-bit is set.

Extending the Processor

We can extend the processor in two simple ways to increase its flexibility. First, we are going to give it a return

address register, Ret, to allow returns from a subroutine, and, second, we are going to add a stack pointer. The

return address register will be used in the same way as ARM’s r14, the link register.

Address

D_Data_in

Memory

Bus BBus A Bus C

MAR

MBR_write

PC

IR0

Read

Write

R0

ALU

B

C

A

GMBR_B

GMBR_C

GR0_C

GR0_B

F2

F1

F0

CMBR_write

EMBR_C

EMBR_B

EPC_B

EIR0_B

ER0_B

ER1_B

CMAR

CPC

CIR0

CR0

R1

GR1_C

GR1_B

CR1

CCRZV NC

ER1_C

ER0_C

The function
code selects the
ALU operation

Q_Data_out

MBR_read
Q

Q

D

D

CMBR_read

IR1

EIR1_BCIR1

IR2

EIR2_B

CIR2

F3

D

D

D

Q

Q

Q

D
Q

Q

Q

Q

D

D

D

GPC_C

EPC_C

Ret

ERet_BCRet

SP

ESP_BCSP

D

D

Q

Q

CSP_down

CSP_up

C

C

C

C

C

C Up Down

C

C

C

C

C

Return address regiser

We have created a stack pointer, SP, that can be loaded from the A bus by clocking CSP. Similarly, the stack

pointer’s output can be deposited on the B bus by enabling bus control ESP_B. The stack pointer is an up/down

counter with up-clock and a down-clock inputs. These two clock inputs allow us to increment it, and to

decrement it, respectively.

The return addresst register is used to store subroutine return addresses. Consider the instruction pair

CALL target and RETURN. The RTL forms of these instructions are:

CALL target: [Ret]  [PC]; [PC]  [PC] + [IR2]; Save PC and branch to PC plus offset

RETURN: [PC]  [Ret]

We can implement these two instructions in terms of the following microoperations.

CALL target: EPC_B, F(pass), CRet ;save return address

 EIR2_B, EPC_C, F(add), CPC ;jump to new address

RETURN: ERet_B, F(pass), CPC ;restore return address to PC

Push and Pull Operations

We can load and store the contents of the stack pointer using any of the microoperation sequences we used for

the same operations on the R0 and R1 registers; all we need do is exchange R0 to SP, etc. Here we are ging to

implement PUSH R0 and PULL R0 operations. We assume a full descending stack; that is the stack pointer

points at the top item on the stack and that the stack pointer grows upwards to low addresses and is decremented

before pushing and incremented after popping.

PUSH R0 is defined in RTL as [SP]  [SP] – 1; [[SP]]  [R0]

PULL R0 is defined in RTL as; [R0]  [[SP]]; [SP]  [SP] + 1

The microoperations required to implement these are:

PUSH R0: CSP_down ; decrement the stack pointer

 ESP_B, F(pass), CMAR ; SP to MAR for memory write

 ER0_B, F(pass), CMBR_write ; R0 to MBR for memory write

 Write ; do the write and push R0

PULL R0: ESP_B, F(pass), CMAR, CSP_up ; SP to MAR for memory read, and post increment SP

 Read, CMBR_read ; read memory and clock top of stack into MBR

 EMBR_read_B, F(pass), CR0 ; MBR to R0

Subroutine Call and Return Using the Stack

Now let’s implement the traditional CISC-style instructions JSR target, and RTS that perform a subroutine

call and return by pushing the return address on the stack (call) and pulling the return address off the stack

(return). Some CISC processors used an absolute address with a JSR, rather than a program counter relative

address. We can easily do this because all instructions have a 16-bit address field.

The RTL forms of these two instructions are:

JSR target: [SP]  [SP] - 1; [[SP]]  [PC]; [PC]  [IR1]; Save PC and load target address in PC to call

RTS: [PC]  [[SP]]; : [SP]  [SP] + 1

We can implement these in terms of the following microoperations.

JSR target: CSP_down ;decrement the stack pointer

 ESP_B, F(pass), CMAR ;SP to MAR for memory write

 EPC0_B, F(pass), CMBR_write ;PC to MBR for memory write

 Write ;do the write and push R0

 EIR1_B, F(pass), CPC ;jump to new address

RTS: ESP_B, F(pass), CMAR, CSP_up ;SP to MAR for memory read, and post increment SP

 Read, CMBR_read ;read memory and clock top of stack into MBR

 EMBR_read_B, F(pass), CPC ;MBR to PC

