
THE STACK FRAME – AN EXAMPLE
1

© 2014 Alan Clements. All Rights Reserved. Computer Organization and Design

 In this example we are going to demonstrate how a subroutine is called
and a stack frame used to store temporary variables.

 We also demonstrate the passing of parameters by reference and by
value.

 Assume that we wish to use a subroutine to calculate C = A2 + B2.

 The structure of this program in memory will be:

 Body of program

 Subroutine

 Stack area

 Data area A,B,C 2

© 2014 Alan Clements. All Rights Reserved. Computer Organization and Design

We can express this operation in C as:

// C function using both pass by value and reference

void SumSq(int P, int Q, int *R)
{
*R = P*P + Q*Q;
}

// Here’s where we set up the variables and call

SumSq
int main()
{
int A = 5; int B = 7;
SumSq(A,B,&C);
}
 3

© 2014 Alan Clements. All Rights Reserved. Computer Organization and Design

The assembly language code is given below. In this presentation we are
going to walk through the code. The code is not optimum and is for
demonstration purposes only.

 AREA SF,CODE,READWRITE ;Test a stack frame
 ADR sp,Stack ;r9 points to the stack
 LDR fp,=0xFFFFFFFF ;dummy fp for tracing
 ADR r0,A ;r0 points to variable A
 LDR r1,[r0] ;r1 contains the value of A
 STR r1,[sp,#-4]! ;push A on the stack
 LDR r1,[r0,#4] ;r1 contains the value of B (4 bytes on from A)
 STR r1,[sp,#-4]! ;push B on the stack
 ADR r1,C ;get address of C in r1
 STR r1,[sp,#-4]! ;push address of C on the stack
 BL AddSq ;call routine
 ADD sp,sp,#12 ;clean up the stack to do the calculation
 ADR r1,C ;get address of C in r1
 LDR r1,[r1] ;push a value of C in r1 (for testing)
Endless B Endless ;dummy loop
 AddSq STMFD sp!,{r0,r1,lr} ;push link register and r0/r1 on the stack
 STR fp,[sp,#-4]! ;push frame pointer on the stack
 MOV fp,sp ;frame pointer points at base of stack frame
 SUB sp,sp,#8 ;create 2-word stack frame
 LDR r0,[fp,#24] ;get param A from stack
 MOV r1,r0 ;copy to r1
 MUL r1,r0,r1 ;square A
 STR r1,[fp,#-4] ;store A.A in stack frame
 LDR r0,[fp,#20] ;get param B from stack
 MOV r1,r0 ;copy to r1
 MUL r1,r0,r1 ;square B
 STR r1,[fp,#-8] ;store B.B in stack frame
 LDR r0,[fp,#-12] ;get A.A from stack frame
 ADD r0,r0,r1 ;calculate A.A + B.B
 STR r0,[fp,#-8] ;save result in stack frame and overwrite B.B
 LDR r0,[fp,#16] ;get address of C in r0
 LDR r1,[fp,#-8] ;get result from stack frame
 STR r1,[r0] ;save result in calling environment
 ADD sp,sp,#8 ;delete stack frame
 LDR fp,[sp],#4 ;restore frame pointer from stack
 LDMFD sp!,{r0,r1,pc} ;pull return address off the stack. Return. Restore r0, r1
A DCD 5 ;value of A
B DCD 7 ;value of B
C DCD 0xAAAAAAAA ;initial dummy value of C
 DCD 0,0,0,0,0,0,0,0,0 ;Space for the stack
Stack DCD 0 ;Stack base
 END

4

© 2014 Alan Clements. All Rights Reserved. Computer Organization and Design

The first three lines define the storage area and set up the stack. We do this
by loading the address of the stack area with the pseudoinstruction ADR. We
also set up the frame pointer with the dummy value 0xFFFFFFFF.

 AREA SF,CODE,READWRITE ;Test a stack frame
 ADR sp,Stack ;r9 points to the stack
 LDR fp,=0xFFFFFFFF ;dummy fp for tracing

Why is the frame pointer loaded with 0xFFFFFFFF? We don’t need to do this,
but we will be able to see it in memory when we debug the program. It’s a
marker.

5

© 2014 Alan Clements. All Rights Reserved. Computer Organization and Design

This is the
state of the
system after
the frame
pointer has
been loaded
with a
dummy
value.

6

© 2014 Alan Clements. All Rights Reserved. Computer Organization and Design

Here’s some background before we continue.

The store operation STR reg,[pointer] stores a register in the
memory location defined by pointer (which is also a register).

STR r0,[r1] stores the contents of register r0 in the memory
location pointed at by register r1.

STR r0,[sp] stores the contents of register r0 in the memory
location pointed at by the stack pointer. The stack pointer can be
written r13 or sp.

To push a register on the stack using a full descending stack, we
have to first predecrement the stack pointer by a word (4 bytes)
before performing the move. We can do this with

STR r0,[sp,#-4]!

The #-4 means subtract 4 from the stack pointer before using it,
and the ! indicates that the change in the stack pointer is to be
kept.

This operation is equivalent to PUSH r0.
7

© 2014 Alan Clements. All Rights Reserved. Computer Organization and Design

The stack has
been set up and
the value of A
pushed on the
stack.

This can be seen
in the memory
may (i.e., 5).

8

© 2014 Alan Clements. All Rights Reserved. Computer Organization and Design

The next step is to push the three parameters on the stack, A, B and the
address of C. Let’s begin with A.

 ADR r0,A ;r0 points to variable A
 LDR r1,[r0] ;r1 contains the value of A
 STR r1,[sp,#-4]! ;push A on the stack

Note that we first have to load r0 with the address of A, then load the
value of A into register r1, and then finally push the contents of r1 on the
stack with STR r1,[sp,#-4]!.

The figure below shows the state of the memory at the end of this
sequence.

9

© 2014 Alan Clements. All Rights Reserved. Computer Organization and Design

The next step is to push parameter B on the stack. We could load the
address of B into a register and use it as a pointer.

However, we set up the data by means of the following directive

A DCD 5 ;value of A
B DCD 7 ;value of B
C DCD 0xAAAAAAAA ;initial dummy value of C

The location of B is 4 bytes from A, so were can use the address of A as a
pointer to B by adding 4 (i.e., using the address [r0,#4]). Note that we have
given C the initial value 0xAAAAAAAA. As before this makes it easy to
trace the program. The code to push B is as follows.

 LDR r1,[r0,#4] ;r1 contains the value of B (4 bytes on from A)
 STR r1,[sp,#-4]! ;push B on the stack

10

© 2014 Alan Clements. All Rights Reserved. Computer Organization and Design

The next step is to push the address of parameter C. We can get it by using
the ADR (load address) pseudoinstruction to put the address of C in r0 and
then push that address on the stack as follows.

 ADR r1,C ;get address of C in r1
 STR r1,[sp,#-4]! ;push address of C on the stack

11

© 2014 Alan Clements. All Rights Reserved. Computer Organization and Design

The value of A
on the stack
(5).

The value of B
on the stack
(7).

The address of
C on the stack
(0x00000094).

The 0xAAAAAAA
marker (i.e., the
dummy value of
C).

This is the data area in the program.

A DCD 5 ;value of A
B DCD 7 ;value of B
C DCD 0xAAAAAAAA ;dummy value of C
 DCD 0,0,0,0,0,0,0,0,0,0 ;space for the stack
Stack DCD ;stack base

These are the
values of A and B
in memory at the
end of the
program.

The first word
at the bottom
of the stack
(the value of A)

12

© 2014 Alan Clements. All Rights Reserved. Computer Organization and Design

We have now used the following block of code to push A, B, and &C on the
stack. The next step is to call the function.

 ADR r0,A ;r0 points to variable A
 LDR r1,[r0] ;r1 contains the value of A
 STR r1,[sp,#-4]! ;push A on the stack
 LDR r1,[r0,#4] ;r1 contains the value of B (4 bytes on from A)
 STR r1,[sp,#-4]! ;push B on the stack
 ADR r1,C ;get address of C in r1
 STR r1,[sp,#-4]! ;push address of C on the stack

13

© 2014 Alan Clements. All Rights Reserved. Computer Organization and Design

This memory map shows the situation after A, B, and &C have
been pushed on the stack, registers r0,r1, and the link register
saved. The old frame pointer 0xFFFFFFFF at the base of the stack
acts as a marker.

The value of A
at the base of
the stack the
stack.

The
value of
B. The

address of
C.

Saved
r0

Saved
r1

Saved link
register

Saved old
frame
pointer

The 2-word
stack frame

14

© 2014 Alan Clements. All Rights Reserved. Computer Organization and Design

We have now used the following block of code to push A, B, and &C on the
stack. The next step is to call the function with:

 BL AddSq ;call routine

This operation saves the return address in the link register, rl (i.e., r14).

The first thing we do in the function is to save the link register on the
stack and any working registers we are going to be using.

In this case we will be using two registers in the function, r0 and r1, so
these will also be pushed on the stack along with the link register.

15

© 2014 Alan Clements. All Rights Reserved. Computer Organization and Design

This is the start of the function.

AddSq STMFD sp!,{r0,r1,lr} ;push link register and r0/r1 on the stack

We have used the STMFD instruction (store multiple registers using a full
descending stack) to push the link register r0, and r1. Registers are always
stacked with the lowest numbered register at the lowest numbered address.

We now have the situation below.

16

© 2014 Alan Clements. All Rights Reserved. Computer Organization and Design

To create a stack frame we first push the old frame pointer on the stack.

AddSq STMFD sp!,{r0,r1,lr} ;push link register and r0/r1 on the stack
 STR fp,[sp,#-4]! ;push frame pointer on the stack

17

© 2014 Alan Clements. All Rights Reserved. Computer Organization and Design

In the next step we copy the stack pointer to the frame pointer. This means
that the frame pointer is now pointing to the base of the current frame (i.e.,
where the previous value of the frame pointer has been saved).

By subtracting 8 (two words) from the stack pointer, we move the stack pointer
up to leave a two-word stack frame.

AddSq STMFD sp!,{r0,r1,lr} ;push link register and r0/r1 on the stack
 STR fp,[sp,#-4]! ;push frame pointer on the stack
 MOV fp,sp ;frame pointer points at base of stack frame
 SUB sp,sp,#8 ;create 2-word stack frame

18

© 2014 Alan Clements. All Rights Reserved. Computer Organization and Design

Here we have exactly the same situation as in the previous figure.

The only difference is that all memory addresses are now labelled with
respect to the current value of the frame pointer.

That is, the frame pointer will be used to make all futures accesses during
the evaluation of the function.

19

© 2014 Alan Clements. All Rights Reserved. Computer Organization and Design

This is simply a repetition of the previous figure. We have used different
shadings to show the three components of the stack: parameters, saved
registers, and stack frame.

20

© 2014 Alan Clements. All Rights Reserved. Computer Organization and Design

Now we can begin data processing. The following code shows how we read
the value of A from the stack 24 bytes (6 words) below the frame pointer
and copy it to register r0.

 LDR r0,[fp,#24] ;get parameter A from stack
 MOV r1,r0 ;copy to r1
 MUL r1,r0,r1 ;square A
 STR r1,[fp,#-4] ;store A2 in stack frame

21

© 2014 Alan Clements. All Rights Reserved. Computer Organization and Design

Now we can begin data processing. The following code shows how we read
the value of A from the stack 24 bytes (6 words) below the frame pointer and
copy it to register r0.

 LDR r0,[fp,#24] ;get parameter A from stack
 MOV r1,r0 ;copy to r1
 MUL r1,r0,r1 ;square A
 STR r1,[fp,#-4] ;store A2 in stack frame

22

© 2014 Alan Clements. All Rights Reserved. Computer Organization and Design

We copy r0 to r1 and then use MUL to square the number. Note that we
have to use two different source registers; this is a requirement of MUL.
Then we copy A2 to the stack frame we have created. Note that it’s location
is 4 bytes above the frame pointer.

 LDR r0,[fp,#24] ;get parameter A from stack
 MOV r1,r0 ;copy to r1
 MUL r1,r0,r1 ;square A
 STR r1,[fp,#-4] ;store A2 in stack frame

23

© 2014 Alan Clements. All Rights Reserved. Computer Organization and Design

We continue with the calculation. Parameter B is read from the stack,
squared and loaded into the second slot on the stack frame as shown.

We now have a stack frame that contains our two temporary variables.

 LDR r0,[fp,#20] ;get parameter B from stack
 MOV r1,r0 ;copy to r1
 MUL r1,r0,r1 ;square B
 STR r1,[fp,#-8] ;store B2 in stack frame
 LDR r0,[fp,#-12] ;get A2 from stack frame
 ADD r0,r0,r1 ;calculate A2 + B2

24

© 2014 Alan Clements. All Rights Reserved. Computer Organization and Design

We now read A2 back from the stack frame and add B2 to it to get A2 + B2.
This final result is saved in the stack frame overwriting the old B2.

 LDR r0,[fp,#-12] ;get A2 from stack frame
 ADD r0,r0,r1 ;calculate A2 + B2

 STR r0,[fp,#-8] ;save result in stack frame and overwrite B2

25

© 2014 Alan Clements. All Rights Reserved. Computer Organization and Design

The next step is to return the result in memory location C. The address of C,
&C, is loaded in register r0 from [fp] + 16. Then the result in the stack frame
is loaded into register r1. This is at [fp] – 8. Finally, the result is passed to
the calling program by STR r1,[r0].

 LDR r0,[fp,#16] ;get address of C in r0
 LDR r1,[fp,#-8] ;get result from stack frame
 STR r1,[r0] ;save result in calling environment

26

© 2014 Alan Clements. All Rights Reserved. Computer Organization and Design

The figure shows the state of the stack after
the first two instructions have been executed
to collapse the stack frame.

Note that the frame pointed has been restored
to its previous value.

All that now remains is to return from the function. We have to collapse the
stack frame, restore registers, and return to the calling point.

 ADD sp,sp,#8 ;delete stack frame
 LDR fp,[sp],#4 ;restore frame pointer from stack
 LDMFD sp!,{r0,r1,pc} ;pull return address off the stack, return, restore r0, r1

27

© 2014 Alan Clements. All Rights Reserved. Computer Organization and Design

The final fragment of code demonstrates the sequence of events after the
return.

AddSq ;call routine
 ADD sp,sp,#12 ;clean up the stack to do the calculation
 ADR r1,C ;get address of C in r1
 LDR r1,[r1] ;push a value of C in r1 (for testing)
Endless B Endless ;dummy loop

We clean up the stack by moving it down three words (12 bytes) to release
the space taken by the three parameters A, B, and &C.

Finally, we load the address of C in r1 and then retrieve its value. This is
done simply to debug the program.

At the end we enter an infinite parking loop.

28

	The Stack Frame – An Example
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28

